Large Language Models (LLMs) have shown potential to enhance software development through automated code generation and refactoring, reducing development time and improving code quality. This study empirically evaluates StarCoder2, an LLM optimized for code generation, in refactoring code across 30 open-source Java projects. We compare StarCoder2's performance against human developers, focusing on (1) code quality improvements, (2) types and effectiveness of refactorings, and (3) enhancements through one-shot and chain-of-thought prompting. Our results indicate that StarCoder2 reduces code smells by 20.1% more than developers, excelling in systematic issues like Long Statement and Magic Number, while developers handle complex, context-dependent issues better. One-shot prompting increases the unit test pass rate by 6.15% and improves code smell reduction by 3.52%. Generating five refactorings per input further increases the pass rate by 28.8%, suggesting that combining one-shot prompting with multiple refactorings optimizes performance. These findings provide insights into StarCoder2's potential and best practices for integrating LLMs into software refactoring, supporting more efficient and effective code improvement in real-world applications.
Existing work on large language model (LLM) personalization assigned different responding roles to LLM, but overlooked the diversity of questioners. In this work, we propose a new form of questioner-aware LLM personalization, generating different responses even for the same query from different questioners. We design a dual-tower model architecture with a cross-questioner general encoder and a questioner-specific encoder. We further apply contrastive learning with multi-view augmentation, pulling close the dialogue representations of the same questioner, while pulling apart those of different questioners. To mitigate the impact of question diversity on questioner-contrastive learning, we cluster the dialogues based on question similarity and restrict the scope of contrastive learning within each cluster. We also build a multi-questioner dataset from English and Chinese scripts and WeChat records, called MQDialog, containing 173 questioners and 12 responders. Extensive evaluation with different metrics shows a significant improvement in the quality of personalized response generation.
Large Language Models (LLMs) have shown strong performance in solving mathematical problems, with code-based solutions proving particularly effective. However, the best practice to leverage coding instruction data to enhance mathematical reasoning remains underexplored. This study investigates three key questions: (1) How do different coding styles of mathematical code-based rationales impact LLMs' learning performance? (2) Can general-domain coding instructions improve performance? (3) How does integrating textual rationales with code-based ones during training enhance mathematical reasoning abilities? Our findings reveal that code-based rationales with concise comments, descriptive naming, and hardcoded solutions are beneficial, while improvements from general-domain coding instructions and textual rationales are relatively minor. Based on these insights, we propose CoinMath, a learning strategy designed to enhance mathematical reasoning by diversifying the coding styles of code-based rationales. CoinMath generates a variety of code-based rationales incorporating concise comments, descriptive naming conventions, and hardcoded solutions. Experimental results demonstrate that CoinMath significantly outperforms its baseline model, MAmmoTH, one of the SOTA math LLMs.
With the increased popularity of Deep Neural Networks (DNNs), increases also the need for tools to assist developers in the DNN implementation, testing and debugging process. Several approaches have been proposed that automatically analyse and localise potential faults in DNNs under test. In this work, we evaluate and compare existing state-of-the-art fault localisation techniques, which operate based on both dynamic and static analysis of the DNN. The evaluation is performed on a benchmark consisting of both real faults obtained from bug reporting platforms and faulty models produced by a mutation tool. Our findings indicate that the usage of a single, specific ground truth (e.g., the human defined one) for the evaluation of DNN fault localisation tools results in pretty low performance (maximum average recall of 0.31 and precision of 0.23). However, such figures increase when considering alternative, equivalent patches that exist for a given faulty DNN. Results indicate that \dfd is the most effective tool, achieving an average recall of 0.61 and precision of 0.41 on our benchmark.
Middleware, third-party software intermediaries between users and platforms, has been broached as a means to decentralize the power of social media platforms and enhance user agency. Middleware may enable a more user-centric and democratic approach to shaping digital experiences, offering a flexible architecture as an alternative to both centrally controlled, opaque platforms and an unmoderated, uncurated internet. The widespread adoption of open middleware has long hinged on the cooperation of established major platforms; however, the recent growth of federated platforms, such as Mastodon and Bluesky, has led to increased offerings and user awareness. In this report we consider the potential of middleware as a means of enabling greater user control over curation and moderation - two aspects of the social media experience that are often mired in controversy. We evaluate the trade-offs and negative externalities it might create, and discuss the technological, regulatory, and market dynamics that could either support or hinder its implementation.
Knowledge Graphs (KGs) and their machine learning counterpart, Knowledge Graph Embedding Models (KGEMs), have seen ever-increasing use in a wide variety of academic and applied settings. In particular, KGEMs are typically applied to KGs to solve the link prediction task; i.e. to predict new facts in the domain of a KG based on existing, observed facts. While this approach has been shown substantial power in many end-use cases, it remains incompletely characterised in terms of how KGEMs react differently to KG structure. This is of particular concern in light of recent studies showing that KG structure can be a significant source of bias as well as partially determinant of overall KGEM performance. This paper seeks to address this gap in the state-of-the-art. This paper provides, to the authors' knowledge, the first comprehensive survey exploring established relationships of Knowledge Graph Embedding Models and Graph structure in the literature. It is the hope of the authors that this work will inspire further studies in this area, and contribute to a more holistic understanding of KGs, KGEMs, and the link prediction task.
Software development support tools have been studied for a long time, with recent approaches using Large Language Models (LLMs) for code generation. These models can generate Python code for data science and machine learning applications. LLMs are helpful for software engineers because they increase productivity in daily work. An LLM can also serve as a "mentor" for inexperienced software developers, and be a viable learning support. High-quality code generation with LLMs can also be beneficial in geospatial data science. However, this domain poses different challenges, and code generation LLMs are typically not evaluated on geospatial tasks. Here, we show how we constructed an evaluation benchmark for code generation models, based on a selection of geospatial tasks. We categorised geospatial tasks based on their complexity and required tools. Then, we created a dataset with tasks that test model capabilities in spatial reasoning, spatial data processing, and geospatial tools usage. The dataset consists of specific coding problems that were manually created for high quality. For every problem, we proposed a set of test scenarios that make it possible to automatically check the generated code for correctness. In addition, we tested a selection of existing code generation LLMs for code generation in the geospatial domain. We share our dataset and reproducible evaluation code on a public GitHub repository, arguing that this can serve as an evaluation benchmark for new LLMs in the future. Our dataset will hopefully contribute to the development new models capable of solving geospatial coding tasks with high accuracy. These models will enable the creation of coding assistants tailored for geospatial applications.
As one of the most popular software applications, a web application is a program, accessible through the web, to dynamically generate content based on user interactions or contextual data, for example, online shopping platforms, social networking sites, and financial services. Web applications operate in diverse environments and leverage web technologies such as HTML, CSS, JavaScript, and Ajax, often incorporating features like asynchronous operations to enhance user experience. Due to the increasing user and popularity of web applications, approaches to their quality have become increasingly important. Web Application Testing (WAT) plays a vital role in ensuring web applications' functionality, security, and reliability. Given the speed with which web technologies are evolving, WAT is especially important. Over the last decade, various WAT approaches have been developed. The diversity of approaches reflects the many aspects of web applications, such as dynamic content, asynchronous operations, and diverse user environments. This paper provides a comprehensive overview of the main achievements during the past decade: It examines the main steps involved in WAT, including test-case generation and execution, and evaluation and assessment. The currently available tools for WAT are also examined. The paper also discusses some open research challenges and potential future WAT work.
Modern artificial intelligence (AI) applications require large quantities of training and test data. This need creates critical challenges not only concerning the availability of such data, but also regarding its quality. For example, incomplete, erroneous, or inappropriate training data can lead to unreliable models that ultimately produce poor decisions. Trustworthy AI applications require high-quality training and test data along many quality dimensions, such as accuracy, completeness, and consistency. We explore empirically the relationship between six data quality dimensions and the performance of 19 popular machine learning algorithms covering the tasks of classification, regression, and clustering, with the goal of explaining their performance in terms of data quality. Our experiments distinguish three scenarios based on the AI pipeline steps that were fed with polluted data: polluted training data, test data, or both. We conclude the paper with an extensive discussion of our observations.
This survey presents an in-depth exploration of knowledge distillation (KD) techniques within the realm of Large Language Models (LLMs), spotlighting the pivotal role of KD in transferring sophisticated capabilities from proprietary giants such as GPT-4 to accessible, open-source models like LLaMA and Mistral. Amidst the evolving AI landscape, this work elucidates the critical disparities between proprietary and open-source LLMs, demonstrating how KD serves as an essential conduit for imbuing the latter with the former's advanced functionalities and nuanced understandings. Our survey is meticulously structured around three foundational pillars: algorithm, skill, and verticalization -- providing a comprehensive examination of KD mechanisms, the enhancement of specific cognitive abilities, and their practical implications across diverse fields. Crucially, the survey navigates the intricate interplay between data augmentation (DA) and KD, illustrating how DA emerges as a powerful paradigm within the KD framework to bolster LLMs' performance. By leveraging DA to generate context-rich, skill-specific training data, KD transcends traditional boundaries, enabling open-source models to approximate the contextual adeptness, ethical alignment, and deep semantic insights characteristic of their proprietary counterparts. This work aims to provide an insightful guide for researchers and practitioners, offering a detailed overview of current methodologies in knowledge distillation and proposing future research directions. By bridging the gap between proprietary and open-source LLMs, this survey underscores the potential for more accessible, efficient, and sustainable AI solutions, fostering a more inclusive and equitable landscape in AI advancements. An associated Github repository is available at //github.com/Tebmer/Awesome-Knowledge-Distillation-of-LLMs.
Recent developments in image classification and natural language processing, coupled with the rapid growth in social media usage, have enabled fundamental advances in detecting breaking events around the world in real-time. Emergency response is one such area that stands to gain from these advances. By processing billions of texts and images a minute, events can be automatically detected to enable emergency response workers to better assess rapidly evolving situations and deploy resources accordingly. To date, most event detection techniques in this area have focused on image-only or text-only approaches, limiting detection performance and impacting the quality of information delivered to crisis response teams. In this paper, we present a new multimodal fusion method that leverages both images and texts as input. In particular, we introduce a cross-attention module that can filter uninformative and misleading components from weak modalities on a sample by sample basis. In addition, we employ a multimodal graph-based approach to stochastically transition between embeddings of different multimodal pairs during training to better regularize the learning process as well as dealing with limited training data by constructing new matched pairs from different samples. We show that our method outperforms the unimodal approaches and strong multimodal baselines by a large margin on three crisis-related tasks.