亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Networked datasets are often enriched by different types of information about individual nodes or edges. However, most existing methods for analyzing such datasets struggle to handle the complexity of heterogeneous data, often requiring substantial model-specific analysis. In this paper, we develop a probabilistic generative model to perform inference in multilayer networks with arbitrary types of information. Our approach employs a Bayesian framework combined with the Laplace matching technique to ease interpretation of inferred parameters. Furthermore, the algorithmic implementation relies on automatic differentiation, avoiding the need for explicit derivations. This makes our model scalable and flexible to adapt to any combination of input data. We demonstrate the effectiveness of our method in detecting overlapping community structures and performing various prediction tasks on heterogeneous multilayer data, where nodes and edges have different types of attributes. Additionally, we showcase its ability to unveil a variety of patterns in a social support network among villagers in rural India by effectively utilizing all input information in a meaningful way.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際(ji)網絡會議(yi)。 Publisher:IFIP。 SIT:

In small area estimation, it is a smart strategy to rely on data measured over time. However, linear mixed models struggle to properly capture time dependencies when the number of lags is large. Given the lack of published studies addressing robust prediction in small areas using time-dependent data, this research seeks to extend M-quantile models to this field. Indeed, our methodology successfully addresses this challenge and offers flexibility to the widely imposed assumption of unit-level independence. Under the new model, robust bias-corrected predictors for small area linear indicators are derived. Additionally, the optimal selection of the robustness parameter for bias correction is explored, contributing theoretically to the field and enhancing outlier detection. For the estimation of the mean squared error (MSE), a first-order approximation and analytical estimators are obtained under general conditions. Several simulation experiments are conducted to evaluate the performance of the fitting algorithm, the new predictors, and the resulting MSE estimators, as well as the optimal selection of the robustness parameter. Finally, an application to the Spanish Living Conditions Survey data illustrates the usefulness of the proposed predictors.

Motivated by the application of saddlepoint approximations to resampling-based statistical tests, we prove that a Lugananni-Rice style approximation for conditional tail probabilities of averages of conditionally independent random variables has vanishing relative error. We also provide a general condition on the existence and uniqueness of the solution to the corresponding saddlepoint equation. The results are valid under a broad class of distributions involving no restrictions on the smoothness of the distribution function. The derived saddlepoint approximation formula can be directly applied to resampling-based hypothesis tests, including bootstrap, sign-flipping and conditional randomization tests. Our results extend and connect several classical saddlepoint approximation results. On the way to proving our main results, we prove a new conditional Berry-Esseen inequality for the sum of conditionally independent random variables, which may be of independent interest.

Variance reduction for causal inference in the presence of network interference is often achieved through either outcome modeling, which is typically analyzed under unit-randomized Bernoulli designs, or clustered experimental designs, which are typically analyzed without strong parametric assumptions. In this work, we study the intersection of these two approaches and consider the problem of estimation in low-order outcome models using data from a general experimental design. Our contributions are threefold. First, we present an estimator of the total treatment effect (also called the global average treatment effect) in a low-degree outcome model when the data are collected under general experimental designs, generalizing previous results for Bernoulli designs. We refer to this estimator as the pseudoinverse estimator and give bounds on its bias and variance in terms of properties of the experimental design. Second, we evaluate these bounds for the case of cluster randomized designs with both Bernoulli and complete randomization. For clustered Bernoulli randomization, we find that our estimator is always unbiased and that its variance scales like the smaller of the variance obtained from a low-order assumption and the variance obtained from cluster randomization, showing that combining these variance reduction strategies is preferable to using either individually. For clustered complete randomization, we find a notable bias-variance trade-off mediated by specific features of the clustering. Third, when choosing a clustered experimental design, our bounds can be used to select a clustering from a set of candidate clusterings. Across a range of graphs and clustering algorithms, we show that our method consistently selects clusterings that perform well on a range of response models, suggesting that our bounds are useful to practitioners.

Deep neural networks (DNNs) have demonstrated remarkable empirical performance in large-scale supervised learning problems, particularly in scenarios where both the sample size $n$ and the dimension of covariates $p$ are large. This study delves into the application of DNNs across a wide spectrum of intricate causal inference tasks, where direct estimation falls short and necessitates multi-stage learning. Examples include estimating the conditional average treatment effect and dynamic treatment effect. In this framework, DNNs are constructed sequentially, with subsequent stages building upon preceding ones. To mitigate the impact of estimation errors from early stages on subsequent ones, we integrate DNNs in a doubly robust manner. In contrast to previous research, our study offers theoretical assurances regarding the effectiveness of DNNs in settings where the dimensionality $p$ expands with the sample size. These findings are significant independently and extend to degenerate single-stage learning problems.

We investigate Petri nets with data, an extension of plain Petri nets where tokens carry values from an infinite data domain, and executability of transitions is conditioned by equalities between data values. We provide a decision procedure for the bi-reachability problem: given a Petri net and its two configurations, we ask if each of the configurations is reachable from the other. This pushes forward the decidability borderline, as the bi-reachability problem subsumes the coverability problem (which is known to be decidable) and is subsumed by the reachability problem (whose decidability status is unknown).

Graph combinatorial optimization problems are widely applicable and notoriously difficult to compute; for example, consider the traveling salesman or facility location problems. In this paper, we explore the feasibility of using convolutional neural networks (CNNs) on graph images to predict the cardinality of combinatorial properties of random graphs and networks. Specifically, we use image representations of modified adjacency matrices of random graphs as training samples for a CNN model to predict the stability number of random graphs; where the stability number is the cardinality of a maximum set of vertices containing no pairwise adjacency. Our approach demonstrates the potential for applying deep learning in combinatorial optimization problems.

In the literature on spatial point processes, there is an emerging challenge in studying marked point processes with points being labelled by functions. In this paper, we focus on point processes living on linear networks and, from distinct points of view, propose several marked summary characteristics that are of great use in studying the average association and dispersion of the function-valued marks. Through a simulation study, we evaluate the performance of our proposed marked summary characteristics, both when marks are independent and when some sort of spatial dependence is evident among them. Finally, we employ our proposed mark summary characteristics to study the spatial structure of urban cycling profiles in Vancouver, Canada.

A new approach based on censoring and moment criterion is introduced for parameter estimation of count distributions when the probability generating function is available even though a closed form of the probability mass function and/or finite moments do not exist.

In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.

Hashing has been widely used in approximate nearest search for large-scale database retrieval for its computation and storage efficiency. Deep hashing, which devises convolutional neural network architecture to exploit and extract the semantic information or feature of images, has received increasing attention recently. In this survey, several deep supervised hashing methods for image retrieval are evaluated and I conclude three main different directions for deep supervised hashing methods. Several comments are made at the end. Moreover, to break through the bottleneck of the existing hashing methods, I propose a Shadow Recurrent Hashing(SRH) method as a try. Specifically, I devise a CNN architecture to extract the semantic features of images and design a loss function to encourage similar images projected close. To this end, I propose a concept: shadow of the CNN output. During optimization process, the CNN output and its shadow are guiding each other so as to achieve the optimal solution as much as possible. Several experiments on dataset CIFAR-10 show the satisfying performance of SRH.

北京阿比特科技有限公司