This paper explores the integration of two AI subdisciplines employed in the development of artificial agents that exhibit intelligent behavior: Large Language Models (LLMs) and Cognitive Architectures (CAs). We present three integration approaches, each grounded in theoretical models and supported by preliminary empirical evidence. The modular approach, which introduces four models with varying degrees of integration, makes use of chain-of-thought prompting, and draws inspiration from augmented LLMs, the Common Model of Cognition, and the simulation theory of cognition. The agency approach, motivated by the Society of Mind theory and the LIDA cognitive architecture, proposes the formation of agent collections that interact at micro and macro cognitive levels, driven by either LLMs or symbolic components. The neuro-symbolic approach, which takes inspiration from the CLARION cognitive architecture, proposes a model where bottom-up learning extracts symbolic representations from an LLM layer and top-down guidance utilizes symbolic representations to direct prompt engineering in the LLM layer. These approaches aim to harness the strengths of both LLMs and CAs, while mitigating their weaknesses, thereby advancing the development of more robust AI systems. We discuss the tradeoffs and challenges associated with each approach.
Social scientists are interested in studying the impact that citizenship status has on health insurance coverage among immigrants in the United States. This can be done using data from the Survey of Income and Program Participation (SIPP); however, two primary challenges emerge. First, statistical models must account for the survey design in some fashion to reduce the risk of bias due to informative sampling. Second, it has been observed that survey respondents misreport citizenship status at nontrivial rates. This too can induce bias within a statistical model. Thus, we propose the use of a weighted pseudo-likelihood mixture of categorical distributions, where the mixture component is determined by the latent true response variable, in order to model the misreported data. We illustrate through an empirical simulation study that this approach can mitigate the two sources of bias attributable to the sample design and misreporting. Importantly, our misreporting model can be further used as a component in a deeper hierarchical model. With this in mind, we conduct an analysis of the relationship between health insurance coverage and citizenship status using data from the SIPP.
Query expansion is a commonly-used technique in many search systems to better represent users' information needs with additional query terms. Existing studies for this task usually propose to expand a query with retrieved or generated contextual documents. However, both types of methods have clear limitations. For retrieval-based methods, the documents retrieved with the original query might not be accurate enough to reveal the search intent, especially when the query is brief or ambiguous. For generation-based methods, existing models can hardly be trained or aligned on a particular corpus, due to the lack of corpus-specific labeled data. In this paper, we propose a novel Large Language Model (LLM) based mutual verification framework for query expansion, which alleviates the aforementioned limitations. Specifically, we first design a query-query-document generation pipeline, which can effectively leverage the contextual knowledge encoded in LLMs to generate sub-queries and corresponding documents from multiple perspectives. Next, we employ a mutual verification method for both generated and retrieved contextual documents, where 1) retrieved documents are filtered with the external contextual knowledge in generated documents, and 2) generated documents are filtered with the corpus-specific knowledge in retrieved documents. Overall, the proposed method allows retrieved and generated documents to complement each other to finalize a better query expansion. We conduct extensive experiments on three information retrieval datasets, i.e., TREC-DL-2020, TREC-COVID, and MSMARCO. The results demonstrate that our method outperforms other baselines significantly.
This paper proposes a conversational approach implemented by the system Chatin for driving an intuitive data exploration experience. Our work aims to unlock the full potential of data analytics and artificial intelligence with a new generation of data science solutions. Chatin is a cutting-edge tool that democratises access to AI-driven solutions, empowering non-technical users from various disciplines to explore data and extract knowledge from it.
Recent advances in large language models elicit reasoning in a chain of thought that allows models to decompose problems in a human-like fashion. Though this paradigm improves multi-step reasoning ability in language models, it is limited by being unimodal and applied mainly to question-answering tasks. We claim that incorporating visual augmentation into reasoning is essential, especially for complex, imaginative tasks. Consequently, we introduce VCoT, a novel method that leverages chain of thought prompting with vision-language grounding to recursively bridge the logical gaps within sequential data. Our method uses visual guidance to generate synthetic multimodal infillings that add consistent and novel information to reduce the logical gaps for downstream tasks that can benefit from temporal reasoning, as well as provide interpretability into models' multi-step reasoning. We apply VCoT to the Visual Storytelling and WikiHow summarization datasets and demonstrate through human evaluation that VCoT offers novel and consistent synthetic data augmentation beating chain of thought baselines, which can be used to enhance downstream performance.
Threshold digital signatures enable a distributed execution of signature functionalities and will play a crucial role in the security of emerging decentralized next-generation networked systems and applications. In this paper, we provide a comprehensive and systematic survey of threshold and distributed signatures with advanced features. Our survey encompasses threshold signatures in conventional and post-quantum cryptography (PQC) settings and captures custom-design and standard signatures (e.g., conventional NIST and NIST-PQC). We examine both generic (via secure multi-party computation) and custom thresholding techniques for a myriad of signature families while investigating exotic signatures, real-life applications, and potential future research direction.
Face recognition technology has advanced significantly in recent years due largely to the availability of large and increasingly complex training datasets for use in deep learning models. These datasets, however, typically comprise images scraped from news sites or social media platforms and, therefore, have limited utility in more advanced security, forensics, and military applications. These applications require lower resolution, longer ranges, and elevated viewpoints. To meet these critical needs, we collected and curated the first and second subsets of a large multi-modal biometric dataset designed for use in the research and development (R&D) of biometric recognition technologies under extremely challenging conditions. Thus far, the dataset includes more than 350,000 still images and over 1,300 hours of video footage of approximately 1,000 subjects. To collect this data, we used Nikon DSLR cameras, a variety of commercial surveillance cameras, specialized long-rage R&D cameras, and Group 1 and Group 2 UAV platforms. The goal is to support the development of algorithms capable of accurately recognizing people at ranges up to 1,000 m and from high angles of elevation. These advances will include improvements to the state of the art in face recognition and will support new research in the area of whole-body recognition using methods based on gait and anthropometry. This paper describes methods used to collect and curate the dataset, and the dataset's characteristics at the current stage.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
With the advent of 5G commercialization, the need for more reliable, faster, and intelligent telecommunication systems are envisaged for the next generation beyond 5G (B5G) radio access technologies. Artificial Intelligence (AI) and Machine Learning (ML) are not just immensely popular in the service layer applications but also have been proposed as essential enablers in many aspects of B5G networks, from IoT devices and edge computing to cloud-based infrastructures. However, most of the existing surveys in B5G security focus on the performance of AI/ML models and their accuracy, but they often overlook the accountability and trustworthiness of the models' decisions. Explainable AI (XAI) methods are promising techniques that would allow system developers to identify the internal workings of AI/ML black-box models. The goal of using XAI in the security domain of B5G is to allow the decision-making processes of the security of systems to be transparent and comprehensible to stakeholders making the systems accountable for automated actions. In every facet of the forthcoming B5G era, including B5G technologies such as RAN, zero-touch network management, E2E slicing, this survey emphasizes the role of XAI in them and the use cases that the general users would ultimately enjoy. Furthermore, we presented the lessons learned from recent efforts and future research directions on top of the currently conducted projects involving XAI.
Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.
Reinforcement learning (RL) is a popular paradigm for addressing sequential decision tasks in which the agent has only limited environmental feedback. Despite many advances over the past three decades, learning in many domains still requires a large amount of interaction with the environment, which can be prohibitively expensive in realistic scenarios. To address this problem, transfer learning has been applied to reinforcement learning such that experience gained in one task can be leveraged when starting to learn the next, harder task. More recently, several lines of research have explored how tasks, or data samples themselves, can be sequenced into a curriculum for the purpose of learning a problem that may otherwise be too difficult to learn from scratch. In this article, we present a framework for curriculum learning (CL) in reinforcement learning, and use it to survey and classify existing CL methods in terms of their assumptions, capabilities, and goals. Finally, we use our framework to find open problems and suggest directions for future RL curriculum learning research.