亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this note, we apply some techniques developed in [1]-[3] to give a particular construction of bivariate Abelian Codes from cyclic codes, multiplying their dimension and preserving their apparent distance. We show that, in the case of cyclic codes whose maximum BCH bound equals its minimum distance the obtained abelian code verifies the same property; that is, the strong apparent distance and the minimum distance coincide. We finally use this construction to multiply Reed-Solomon codes to abelian codes

相關內容

Lattices are architected metamaterials whose properties strongly depend on their geometrical design. The analogy between lattices and graphs enables the use of graph neural networks (GNNs) as a faster surrogate model compared to traditional methods such as finite element modelling. In this work, we generate a big dataset of structure-property relationships for strut-based lattices. The dataset is made available to the community which can fuel the development of methods anchored in physical principles for the fitting of fourth-order tensors. In addition, we present a higher-order GNN model trained on this dataset. The key features of the model are (i) SE(3) equivariance, and (ii) consistency with the thermodynamic law of conservation of energy. We compare the model to non-equivariant models based on a number of error metrics and demonstrate its benefits in terms of predictive performance and reduced training requirements. Finally, we demonstrate an example application of the model to an architected material design task. The methods which we developed are applicable to fourth-order tensors beyond elasticity such as piezo-optical tensor etc.

In this paper, we study parameter identification for solutions to (possibly non-linear) SDEs driven by additive Rosenblatt process and singularity of the induced laws on the path space. We propose a joint estimator for the drift parameter, diffusion intensity, and Hurst index that can be computed from discrete-time observations with a bounded time horizon and we prove its strong consistency (as well as the speed of convergence) under in-fill asymptotics with a fixed time horizon. As a consequence of this strong consistency, singularity of measures generated by the solutions with different drifts is shown. This results in the invalidity of a Girsanov-type theorem for Rosenblatt processes.

In this paper we apply the stochastic variance reduced gradient (SVRG) method, which is a popular variance reduction method in optimization for accelerating the stochastic gradient method, to solve large scale linear ill-posed systems in Hilbert spaces. Under {\it a priori} choices of stopping indices, we derive a convergence rate result when the sought solution satisfies a benchmark source condition and establish a convergence result without using any source condition. To terminate the method in an {\it a posteriori} manner, we consider the discrepancy principle and show that it terminates the method in finite many iteration steps almost surely. Various numerical results are reported to test the performance of the method.

Reference-based metrics such as BLEU and BERTScore are widely used to evaluate question generation (QG). In this study, on QG benchmarks such as SQuAD and HotpotQA, we find that using human-written references cannot guarantee the effectiveness of the reference-based metrics. Most QG benchmarks have only one reference; we replicated the annotation process and collect another reference. A good metric was expected to grade a human-validated question no worse than generated questions. However, the results of reference-based metrics on our newly collected reference disproved the metrics themselves. We propose a reference-free metric consisted of multi-dimensional criteria such as naturalness, answerability, and complexity, utilizing large language models. These criteria are not constrained to the syntactic or semantic of a single reference question, and the metric does not require a diverse set of references. Experiments reveal that our metric accurately distinguishes between high-quality questions and flawed ones, and achieves state-of-the-art alignment with human judgment.

Fourth-order variational inequalities are encountered in various scientific and engineering disciplines, including elliptic optimal control problems and plate obstacle problems. In this paper, we consider additive Schwarz methods for solving fourth-order variational inequalities. Based on a unified framework of various finite element methods for fourth-order variational inequalities, we develop one- and two-level additive Schwarz methods. We prove that the two-level method is scalable in the sense that the convergence rate of the method depends on $H/h$ and $H/\delta$ only, where $h$ and $H$ are the typical diameters of an element and a subdomain, respectively, and $\delta$ measures the overlap among the subdomains. This proof relies on a new nonlinear positivity-preserving coarse interpolation operator, the construction of which was previously unknown. To the best of our knowledge, this analysis represents the first investigation into the scalability of the two-level additive Schwarz method for fourth-order variational inequalities. Our theoretical results are verified by numerical experiments.

On a Goppa code whose structure polynomial has coefficients in the symbol field, the Frobenius acts. Its fixed codewords form a subcode. Deleting the naturally occurred redundance, we obtain a new code. It is proved that these new codes approach the Gilbert-Varshamov bound. It is also proved that these codes can be decoded within $O(n^2(\logn)^a)$ operations in the symbol field, which is usually much small than the location field, where $n$ is the codeword length, and $a$ a constant determined by the polynomial factorization algorithm.

We investigate the R\'enyi entropy of independent sums of integer valued random variables through Fourier theoretic means, and give sharp comparisons between the variance and the R\'enyi entropy, for Poisson-Bernoulli variables. As applications we prove that a discrete ``min-entropy power'' is super additive on independent variables up to a universal constant, and give new bounds on an entropic generalization of the Littlewood-Offord problem that are sharp in the ``Poisson regime''.

In this paper, we propose two algorithms for a hybrid construction of all $n\times n$ MDS and involutory MDS matrices over a finite field $\mathbb{F}_{p^m}$, respectively. The proposed algorithms effectively narrow down the search space to identify $(n-1) \times (n-1)$ MDS matrices, facilitating the generation of all $n \times n$ MDS and involutory MDS matrices over $\mathbb{F}_{p^m}$. To the best of our knowledge, existing literature lacks methods for generating all $n\times n$ MDS and involutory MDS matrices over $\mathbb{F}_{p^m}$. In our approach, we introduce a representative matrix form for generating all $n\times n$ MDS and involutory MDS matrices over $\mathbb{F}_{p^m}$. The determination of these representative MDS matrices involves searching through all $(n-1)\times (n-1)$ MDS matrices over $\mathbb{F}_{p^m}$. Our contributions extend to proving that the count of all $3\times 3$ MDS matrices over $\mathbb{F}_{2^m}$ is precisely $(2^m-1)^5(2^m-2)(2^m-3)(2^{2m}-9\cdot 2^m+21)$. Furthermore, we explicitly provide the count of all $4\times 4$ MDS and involutory MDS matrices over $\mathbb{F}_{2^m}$ for $m=2, 3, 4$.

Confidence intervals based on the central limit theorem (CLT) are a cornerstone of classical statistics. Despite being only asymptotically valid, they are ubiquitous because they permit statistical inference under weak assumptions and can often be applied to problems even when nonasymptotic inference is impossible. This paper introduces time-uniform analogues of such asymptotic confidence intervals, adding to the literature on confidence sequences (CS) -- sequences of confidence intervals that are uniformly valid over time -- which provide valid inference at arbitrary stopping times and incur no penalties for "peeking" at the data, unlike classical confidence intervals which require the sample size to be fixed in advance. Existing CSs in the literature are nonasymptotic, enjoying finite-sample guarantees but not the aforementioned broad applicability of asymptotic confidence intervals. This work provides a definition for "asymptotic CSs" and a general recipe for deriving them. Asymptotic CSs forgo nonasymptotic validity for CLT-like versatility and (asymptotic) time-uniform guarantees. While the CLT approximates the distribution of a sample average by that of a Gaussian for a fixed sample size, we use strong invariance principles (stemming from the seminal 1960s work of Strassen) to uniformly approximate the entire sample average process by an implicit Gaussian process. As an illustration, we derive asymptotic CSs for the average treatment effect in observational studies (for which nonasymptotic bounds are essentially impossible to derive even in the fixed-time regime) as well as randomized experiments, enabling causal inference in sequential environments.

To retrieve more relevant, appropriate and useful documents given a query, finding clues about that query through the text is crucial. Recent deep learning models regard the task as a term-level matching problem, which seeks exact or similar query patterns in the document. However, we argue that they are inherently based on local interactions and do not generalise to ubiquitous, non-consecutive contextual relationships.In this work, we propose a novel relevance matching model based on graph neural networks to leverage the document-level word relationships for ad-hoc retrieval. In addition to the local interactions, we explicitly incorporate all contexts of a term through the graph-of-word text format. Matching patterns can be revealed accordingly to provide a more accurate relevance score. Our approach significantly outperforms strong baselines on two ad-hoc benchmarks. We also experimentally compare our model with BERT and show our ad-vantages on long documents.

北京阿比特科技有限公司