亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we develop a new residual-based pointwise a posteriori error estimator of the quadratic finite element method for the Signorini problem. The supremum norm a posteriori error estimates enable us to locate the singularities locally to control the pointwise errors. In the analysis the discrete counterpart of contact force density is constructed suitably to exhibit the desired sign property. We employ a priori estimates for the standard Green's matrix for the divergence type operator and introduce the upper and lower barriers functions by appropriately modifying the discrete solution. Finally, we present numerical experiments that illustrate the excellent performance of the proposed error estimator.

相關內容

In this paper, we propose an algorithm that allows joint refinement of camera pose and scene geometry represented by decomposed low-rank tensor, using only 2D images as supervision. First, we conduct a pilot study based on a 1D signal and relate our findings to 3D scenarios, where the naive joint pose optimization on voxel-based NeRFs can easily lead to sub-optimal solutions. Moreover, based on the analysis of the frequency spectrum, we propose to apply convolutional Gaussian filters on 2D and 3D radiance fields for a coarse-to-fine training schedule that enables joint camera pose optimization. Leveraging the decomposition property in decomposed low-rank tensor, our method achieves an equivalent effect to brute-force 3D convolution with only incurring little computational overhead. To further improve the robustness and stability of joint optimization, we also propose techniques of smoothed 2D supervision, randomly scaled kernel parameters, and edge-guided loss mask. Extensive quantitative and qualitative evaluations demonstrate that our proposed framework achieves superior performance in novel view synthesis as well as rapid convergence for optimization.

In this paper, we introduce a novel paradigm to enhance the ability of object detector, e.g., expanding categories or improving detection performance, by training on synthetic dataset generated from diffusion models. Specifically, we integrate an instance-level grounding head into a pre-trained, generative diffusion model, to augment it with the ability of localising arbitrary instances in the generated images. The grounding head is trained to align the text embedding of category names with the regional visual feature of the diffusion model, using supervision from an off-the-shelf object detector, and a novel self-training scheme on (novel) categories not covered by the detector. This enhanced version of diffusion model, termed as InstaGen, can serve as a data synthesizer for object detection. We conduct thorough experiments to show that, object detector can be enhanced while training on the synthetic dataset from InstaGen, demonstrating superior performance over existing state-of-the-art methods in open-vocabulary (+4.5 AP) and data-sparse (+1.2 to 5.2 AP) scenarios.

Screening traditionally refers to the problem of detecting active inputs in the computer model. In this paper, we develop methodology that applies to screening, but the main focus is on detecting active inputs not in the computer model itself but rather on the discrepancy function that is introduced to account for model inadequacy when linking the computer model with field observations. We contend this is an important problem as it informs the modeler which are the inputs that are potentially being mishandled in the model, but also along which directions it may be less recommendable to use the model for prediction. The methodology is Bayesian and is inspired by the continuous spike and slab prior popularized by the literature on Bayesian variable selection. In our approach, and in contrast with previous proposals, a single MCMC sample from the full model allows us to compute the posterior probabilities of all the competing models, resulting in a methodology that is computationally very fast. The approach hinges on the ability to obtain posterior inclusion probabilities of the inputs, which are very intuitive and easy to interpret quantities, as the basis for selecting active inputs. For that reason, we name the methodology PIPS -- posterior inclusion probability screening.

In this paper, we present a simple yet effective continual learning method for blind image quality assessment (BIQA) with improved quality prediction accuracy, plasticity-stability trade-off, and task-order/-length robustness. The key step in our approach is to freeze all convolution filters of a pre-trained deep neural network (DNN) for an explicit promise of stability, and learn task-specific normalization parameters for plasticity. We assign each new IQA dataset (i.e., task) a prediction head, and load the corresponding normalization parameters to produce a quality score. The final quality estimate is computed by black a weighted summation of predictions from all heads with a lightweight $K$-means gating mechanism. Extensive experiments on six IQA datasets demonstrate the advantages of the proposed method in comparison to previous training techniques for BIQA.

In this paper, we address the challenge of detecting hateful memes in the low-resource setting where only a few labeled examples are available. Our approach leverages the compositionality of Low-rank adaptation (LoRA), a widely used parameter-efficient tuning technique. We commence by fine-tuning large language models (LLMs) with LoRA on selected tasks pertinent to hateful meme detection, thereby generating a suite of LoRA modules. These modules are capable of essential reasoning skills for hateful meme detection. We then use the few available annotated samples to train a module composer, which assigns weights to the LoRA modules based on their relevance. The model's learnable parameters are directly proportional to the number of LoRA modules. This modularized network, underpinned by LLMs and augmented with LoRA modules, exhibits enhanced generalization in the context of hateful meme detection. Our evaluation spans three datasets designed for hateful meme detection in a few-shot learning context. The proposed method demonstrates superior performance to traditional in-context learning, which is also more computationally intensive during inference.We then use the few available annotated samples to train a module composer, which assigns weights to the LoRA modules based on their relevance. The model's learnable parameters are directly proportional to the number of LoRA modules. This modularized network, underpinned by LLMs and augmented with LoRA modules, exhibits enhanced generalization in the context of hateful meme detection. Our evaluation spans three datasets designed for hateful meme detection in a few-shot learning context. The proposed method demonstrates superior performance to traditional in-context learning, which is also more computationally intensive during inference.

In this paper, the focus is on improving the efficiency and precision of mineral data collection using UAVs by addressing key challenges associated with sensor integration. These challenges include mitigating electromagnetic interference, reducing vibration noise, and ensuring consistent sensor performance during flight. The paper demonstrates how innovative approaches to these issues can significantly transform UAV-assisted mineral data collection. Through meticulous design, testing, and evaluation, the study presents experimental evidence of the efficacy of these methods in collecting mineral data via UAVs. The advancements achieved in this research enable the UAV platform to remain airborne up to 6$\times$ longer than standard battery-powered multirotors, while still gathering high-quality mineral data. This leads to increased operational efficiency and reduced costs in UAV-based mineral data-gathering processes

In this paper, we introduce an accelerated distributed stochastic gradient method with momentum for solving the distributed optimization problem, where a group of $n$ agents collaboratively minimize the average of the local objective functions over a connected network. The method, termed ``Distributed Stochastic Momentum Tracking (DSMT)'', is a single-loop algorithm that utilizes the momentum tracking technique as well as the Loopless Chebyshev Acceleration (LCA) method. We show that DSMT can asymptotically achieve comparable convergence rates as centralized stochastic gradient descent (SGD) method under a general variance condition regarding the stochastic gradients. Moreover, the number of iterations (transient times) required for DSMT to achieve such rates behaves as $\mathcal{O}(n^{5/3}/(1-\lambda))$ for minimizing general smooth objective functions, and $\mathcal{O}(\sqrt{n/(1-\lambda)})$ under the Polyak-{\L}ojasiewicz (PL) condition. Here, the term $1-\lambda$ denotes the spectral gap of the mixing matrix related to the underlying network topology. Notably, the obtained results do not rely on multiple inter-node communications or stochastic gradient accumulation per iteration, and the transient times are the shortest under the setting to the best of our knowledge.

In this paper, we consider the problem of distributed optimisation of a separable convex cost function over a graph, where every edge and node in the graph could carry both linear equality and/or inequality constraints. We show how to modify the primal-dual method of multipliers (PDMM), originally designed for linear equality constraints, such that it can handle inequality constraints as well. The proposed algorithm does not need any slack variables, which is similar to the recent work [1] which extends the alternating direction method of multipliers (ADMM) for addressing decomposable optimisation with linear equality and inequality constraints. Using convex analysis, monotone operator theory and fixed-point theory, we show how to derive the update equations of the modified PDMM algorithm by applying Peaceman-Rachford splitting to the monotonic inclusion related to the lifted dual problem. To incorporate the inequality constraints, we impose a non-negativity constraint on the associated dual variables. This additional constraint results in the introduction of a reflection operator to model the data exchange in the network, instead of a permutation operator as derived for equality constraint PDMM. Convergence for both synchronous and stochastic update schemes of PDMM are provided. The latter includes asynchronous update schemes and update schemes with transmission losses. Experiments show that PDMM converges notably faster than extended ADMM of [1].

This study explores the impact of peer acknowledgement on learner engagement and implicit psychological attributes in written annotations on an online social reading platform. Participants included 91 undergraduates from a large North American University. Using log file data, we analyzed the relationship between learners' received peer acknowledgement and their subsequent annotation behaviours using cross-lag regression. Higher peer acknowledgements correlate with increased initiation of annotations and responses to peer annotations. By applying text mining techniques and calculating Shapley values to analyze 1,969 social annotation entries, we identified prominent psychological themes within three dimensions (i.e., affect, cognition, and motivation) that foster peer acknowledgment in digital social annotation. These themes include positive affect, openness to learning and discussion, and expression of motivation. The findings assist educators in improving online learning communities and provide guidance to technology developers in designing effective prompts, drawing from both implicit psychological cues and explicit learning behaviours.

In this paper, we tackle two challenges in multimodal learning for visual recognition: 1) when missing-modality occurs either during training or testing in real-world situations; and 2) when the computation resources are not available to finetune on heavy transformer models. To this end, we propose to utilize prompt learning and mitigate the above two challenges together. Specifically, our modality-missing-aware prompts can be plugged into multimodal transformers to handle general missing-modality cases, while only requiring less than 1% learnable parameters compared to training the entire model. We further explore the effect of different prompt configurations and analyze the robustness to missing modality. Extensive experiments are conducted to show the effectiveness of our prompt learning framework that improves the performance under various missing-modality cases, while alleviating the requirement of heavy model re-training. Code is available.

北京阿比特科技有限公司