亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Infinitary and cyclic proof systems are proof systems for logical formulas with fixed-point operators or inductive definitions. A cyclic proof system is a restriction of the corresponding infinitary proof system. Hence, these proof systems are generally not the same, as in the cyclic system may be weaker than the infinitary system. For several logics, the infinitary proof systems are shown to be cut-free complete. However, cyclic proof systems are characterized with many unknown problems on the (cut-free) completeness or the cut-elimination property. In this study, we show that the provability of infinitary and cyclic proof systems are the same for some propositional logics with fixed-point operators or inductive definitions and that the cyclic proof systems are cut-free complete.

相關內容

The comparison of frequency distributions is a common statistical task with broad applications and a long history of methodological development. However, existing measures do not quantify the magnitude and direction by which one distribution is shifted relative to another. In the present study, we define distributional shift (DS) as the concentration of frequencies away from the greatest discrete class, e.g., a histogram's right-most bin. We derive a measure of DS based on the sum of cumulative frequencies, intuitively quantifying shift as a statistical moment. We then define relative distributional shift (RDS) as the difference in DS between distributions. Using simulated random sampling, we demonstrate that RDS is highly related to measures that are popularly used to compare frequency distributions. Focusing on a specific use case, i.e., simulated healthcare Evaluation and Management coding profiles, we show how RDS can be used to examine many pairs of empirical and expected distributions via shift-significance plots. In comparison to other measures, RDS has the unique advantage of being a signed (directional) measure based on a simple difference in an intuitive property.

The logistic regression model is one of the most popular data generation model in noisy binary classification problems. In this work, we study the sample complexity of estimating the parameters of the logistic regression model up to a given $\ell_2$ error, in terms of the dimension and the inverse temperature, with standard normal covariates. The inverse temperature controls the signal-to-noise ratio of the data generation process. While both generalization bounds and asymptotic performance of the maximum-likelihood estimator for logistic regression are well-studied, the non-asymptotic sample complexity that shows the dependence on error and the inverse temperature for parameter estimation is absent from previous analyses. We show that the sample complexity curve has two change-points in terms of the inverse temperature, clearly separating the low, moderate, and high temperature regimes.

The aim of this paper is to develop a numerical scheme to approximate evolving interface problems for parabolic equations based on the abstract evolving finite element framework proposed in (C M Elliott, T Ranner, IMA J Num Anal, 41:3, 2021, doi:10.1093/imanum/draa062). An appropriate weak formulation of the problem is derived for the use of evolving finite elements designed to accommodate for a moving interface. Optimal order error bounds are proved for arbitrary order evolving isoparametric finite elements. The paper concludes with numerical results for a model problem verifying orders of convergence.

Multi-fidelity models provide a framework for integrating computational models of varying complexity, allowing for accurate predictions while optimizing computational resources. These models are especially beneficial when acquiring high-accuracy data is costly or computationally intensive. This review offers a comprehensive analysis of multi-fidelity models, focusing on their applications in scientific and engineering fields, particularly in optimization and uncertainty quantification. It classifies publications on multi-fidelity modeling according to several criteria, including application area, surrogate model selection, types of fidelity, combination methods and year of publication. The study investigates techniques for combining different fidelity levels, with an emphasis on multi-fidelity surrogate models. This work discusses reproducibility, open-sourcing methodologies and benchmarking procedures to promote transparency. The manuscript also includes educational toy problems to enhance understanding. Additionally, this paper outlines best practices for presenting multi-fidelity-related savings in a standardized, succinct and yet thorough manner. The review concludes by examining current trends in multi-fidelity modeling, including emerging techniques, recent advancements, and promising research directions.

We formulate a uniform tail bound for empirical processes indexed by a class of functions, in terms of the individual deviations of the functions rather than the worst-case deviation in the considered class. The tail bound is established by introducing an initial "deflation" step to the standard generic chaining argument. The resulting tail bound is the sum of the complexity of the "deflated function class" in terms of a generalization of Talagrand's $\gamma$ functional, and the deviation of the function instance, both of which are formulated based on the natural seminorm induced by the corresponding Cram\'{e}r functions. We also provide certain approximations for the mentioned seminorm when the function class lies in a given (exponential type) Orlicz space, that can be used to make the complexity term and the deviation term more explicit.

The development of cubical type theory inspired the idea of "extension types" which has been found to have applications in other type theories that are unrelated to homotopy type theory or cubical type theory. This article describes these applications, including on records, metaprogramming, controlling unfolding, and some more exotic ones.

Differential equation models are crucial to scientific processes. The values of model parameters are important for analyzing the behaviour of solutions. A parameter is called globally identifiable if its value can be uniquely determined from the input and output functions. To determine if a parameter estimation problem is well-posed for a given model, one must check if the model parameters are globally identifiable. This problem has been intensively studied for ordinary differential equation models, with theory and several efficient algorithms and software packages developed. A comprehensive theory of algebraic identifiability for PDEs has hitherto not been developed due to the complexity of initial and boundary conditions. Here, we provide theory and algorithms, based on differential algebra, for testing identifiability of polynomial PDE models. We showcase this approach on PDE models arising in the sciences.

We introduce free probability analogues of the stochastic theta methods for free stochastic differential equations, which generalize the free Euler-Maruyama method introduced by Schl\"{u}chtermann and Wibmer [27]. Under some mild conditions, we prove the strong convergence and exponential stability in mean square of the numerical solution. The free stochastic theta method with $\theta=1$ can inherit the exponential stability of original equations for any given step size. Our method can offer better stability and efficiency than the free Euler-Maruyama method. Moreover, numerical results are reported to confirm these theoretical findings.

This paper is devoted to the theoretical and numerical investigation of the initial boundary value problem for a system of equations used for the description of waves in coastal areas, namely, the Boussinesq-Abbott system in the presence of topography. We propose a procedure that allows one to handle very general linear or nonlinear boundary conditions. It consists in reducing the problem to a system of conservation laws with nonlocal fluxes and coupled to an ODE. This reformulation is used to propose two hybrid finite volumes/finite differences schemes of first and second order respectively. The possibility to use many kinds of boundary conditions is used to investigate numerically the asymptotic stability of the boundary conditions, which is an issue of practical relevance in coastal oceanography since asymptotically stable boundary conditions would allow one to reconstruct a wave field from the knowledge of the boundary data only, even if the initial data is not known.

We consider the estimation of the cumulative hazard function, and equivalently the distribution function, with censored data under a setup that preserves the privacy of the survival database. This is done through a $\alpha$-locally differentially private mechanism for the failure indicators and by proposing a non-parametric kernel estimator for the cumulative hazard function that remains consistent under the privatization. Under mild conditions, we also prove lowers bounds for the minimax rates of convergence and show that estimator is minimax optimal under a well-chosen bandwidth.

小貼士
登錄享
相關主題
北京阿比特科技有限公司