We consider the problem of estimating probability density functions based on sample data, using a finite mixture of densities from some component class. To this end, we introduce the $h$-lifted Kullback--Leibler (KL) divergence as a generalization of the standard KL divergence and a criterion for conducting risk minimization. Under a compact support assumption, we prove an $\mc{O}(1/{\sqrt{n}})$ bound on the expected estimation error when using the $h$-lifted KL divergence, which extends the results of Rakhlin et al. (2005, ESAIM: Probability and Statistics, Vol. 9) and Li and Barron (1999, Advances in Neural Information ProcessingSystems, Vol. 12) to permit the risk bounding of density functions that are not strictly positive. We develop a procedure for the computation of the corresponding maximum $h$-lifted likelihood estimators ($h$-MLLEs) using the Majorization-Maximization framework and provide experimental results in support of our theoretical bounds.
Feynman integrals are solutions to linear partial differential equations with polynomial coefficients. Using a triangle integral with general exponents as a case in point, we compare $D$-module methods to dedicated methods developed for solving differential equations appearing in the context of Feynman integrals, and provide a dictionary of the relevant concepts. In particular, we implement an algorithm due to Saito, Sturmfels, and Takayama to derive canonical series solutions of regular holonomic $D$-ideals, and compare them to asymptotic series derived by the respective Fuchsian systems.
Humans learn multiple tasks in succession with minimal mutual interference, through the context gating mechanism in the prefrontal cortex (PFC). The brain-inspired models of spiking neural networks (SNN) have drawn massive attention for their energy efficiency and biological plausibility. To overcome catastrophic forgetting when learning multiple tasks in sequence, current SNN models for lifelong learning focus on memory reserving or regularization-based modification, while lacking SNN to replicate human experimental behavior. Inspired by biological context-dependent gating mechanisms found in PFC, we propose SNN with context gating trained by the local plasticity rule (CG-SNN) for lifelong learning. The iterative training between global and local plasticity for task units is designed to strengthen the connections between task neurons and hidden neurons and preserve the multi-task relevant information. The experiments show that the proposed model is effective in maintaining the past learning experience and has better task-selectivity than other methods during lifelong learning. Our results provide new insights that the CG-SNN model can extend context gating with good scalability on different SNN architectures with different spike-firing mechanisms. Thus, our models have good potential for parallel implementation on neuromorphic hardware and model human's behavior.
Contemporary practices in instruction tuning often hinge on enlarging data scaling without a clear strategy for ensuring data quality, inadvertently introducing noise that may compromise model performance. To address this challenge, we introduce \textsc{Nuggets}, a novel and efficient methodology that leverages one-shot learning to discern and select high-quality instruction data from extensive datasets. \textsc{Nuggets} assesses the potential of individual instruction examples to act as effective one-shot learning instances, thereby identifying those that can significantly improve performance across diverse tasks. \textsc{Nuggets} utilizes a scoring system based on the impact of candidate examples on the perplexity of a diverse anchor set, facilitating the selection of the most advantageous data for instruction tuning. Through comprehensive evaluations on two benchmarks, including MT-Bench and Alpaca-Eval, we show that instruction tuning with the top 1\% of examples curated by \textsc{Nuggets} substantially outperforms conventional methods employing the entire dataset.
This work presents a compact, cumulative and coalescible probabilistic voxel mapping method to enhance performance, accuracy and memory efficiency in LiDAR odometry. Probabilistic voxel mapping requires storing past point clouds and re-iterating on them to update the uncertainty every iteration, which consumes large memory space and CPU cycles. To solve this problem, we propose a two-folded strategy. First, we introduce a compact point-free representation for probabilistic voxels and derive a cumulative update of the planar uncertainty without caching original point clouds. Our voxel structure only keeps track of a predetermined set of statistics for points that lie inside it. This method reduces the runtime complexity from $O(MN)$ to $O(N)$ and the space complexity from $O(N)$ to $O(1)$ where $M$ is the number of iterations and $N$ is the number of points. Second, to further minimize memory usage and enhance mapping accuracy, we provide a strategy to dynamically merge voxels associated with the same physical planes by taking advantage of the geometric features in the real world. Rather than scanning for these coalescible voxels constantly at every iteration, our merging strategy accumulates voxels in a locality-sensitive hash and triggers merging lazily. On-demand merging not only reduces memory footprint with minimal computational overhead but also improves localization accuracy thanks to cross-voxel denoising. Experiments exhibit 20% higher accuracy, 20% faster performance and 70% lower memory consumption than the state-of-the-art.
The $2$-Wasserstein distance is sensitive to minor geometric differences between distributions, making it a very powerful dissimilarity metric. However, due to this sensitivity, a small outlier mass can also cause a significant increase in the $2$-Wasserstein distance between two similar distributions. Similarly, sampling discrepancy can cause the empirical $2$-Wasserstein distance on $n$ samples in $\mathbb{R}^2$ to converge to the true distance at a rate of $n^{-1/4}$, which is significantly slower than the rate of $n^{-1/2}$ for $1$-Wasserstein distance. We introduce a new family of distances parameterized by $k \ge 0$, called $k$-RPW that is based on computing the partial $2$-Wasserstein distance. We show that (1) $k$-RPW satisfies the metric properties, (2) $k$-RPW is robust to small outlier mass while retaining the sensitivity of $2$-Wasserstein distance to minor geometric differences, and (3) when $k$ is a constant, $k$-RPW distance between empirical distributions on $n$ samples in $\mathbb{R}^2$ converges to the true distance at a rate of $n^{-1/3}$, which is faster than the convergence rate of $n^{-1/4}$ for the $2$-Wasserstein distance. Using the partial $p$-Wasserstein distance, we extend our distance to any $p \in [1,\infty]$. By setting parameters $k$ or $p$ appropriately, we can reduce our distance to the total variation, $p$-Wasserstein, and the L\'evy-Prokhorov distances. Experiments show that our distance function achieves higher accuracy in comparison to the $1$-Wasserstein, $2$-Wasserstein, and TV distances for image retrieval tasks on noisy real-world data sets.
Orthogonal matrices play an important role in probability and statistics, particularly in high-dimensional statistical models. Parameterizing these models using orthogonal matrices facilitates dimension reduction and parameter identification. However, establishing the theoretical validity of statistical inference in these models from a frequentist perspective is challenging, leading to a preference for Bayesian approaches because of their ability to offer consistent uncertainty quantification. Markov chain Monte Carlo methods are commonly used for numerical approximation of posterior distributions, and sampling on the Stiefel manifold, which comprises orthogonal matrices, poses significant difficulties. While various strategies have been proposed for this purpose, gradient-based Markov chain Monte Carlo with parameterizations is the most efficient. However, a comprehensive comparison of these parameterizations is lacking in the existing literature. This study aims to address this gap by evaluating numerical efficiency of the four alternative parameterizations of orthogonal matrices under equivalent conditions. The evaluation was conducted for four problems. The results suggest that polar expansion parameterization is the most efficient, particularly for the high-dimensional and complex problems. However, all parameterizations exhibit limitations in significantly high-dimensional or difficult tasks, emphasizing the need for further advancements in sampling methods for orthogonal matrices.
We consider the problem of computing tight privacy guarantees for the composition of subsampled differentially private mechanisms. Recent algorithms can numerically compute the privacy parameters to arbitrary precision but must be carefully applied. Our main contribution is to address two common points of confusion. First, some privacy accountants assume that the privacy guarantees for the composition of a subsampled mechanism are determined by self-composing the worst-case datasets for the uncomposed mechanism. We show that this is not true in general. Second, Poisson subsampling is sometimes assumed to have similar privacy guarantees compared to sampling without replacement. We show that the privacy guarantees may in fact differ significantly between the two sampling schemes. In particular, we give an example of hyperparameters that result in $\varepsilon \approx 1$ for Poisson subsampling and $\varepsilon > 10$ for sampling without replacement. This occurs for some parameters that could realistically be chosen for DP-SGD.
The success of AI models relies on the availability of large, diverse, and high-quality datasets, which can be challenging to obtain due to data scarcity, privacy concerns, and high costs. Synthetic data has emerged as a promising solution by generating artificial data that mimics real-world patterns. This paper provides an overview of synthetic data research, discussing its applications, challenges, and future directions. We present empirical evidence from prior art to demonstrate its effectiveness and highlight the importance of ensuring its factuality, fidelity, and unbiasedness. We emphasize the need for responsible use of synthetic data to build more powerful, inclusive, and trustworthy language models.
The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.