Integrating variable renewable energy into the grid has posed challenges to system operators in achieving optimal trade-offs among energy availability, cost affordability, and pollution controllability. This paper proposes a multi-agent reinforcement learning framework for managing energy transactions in microgrids. The framework addresses the challenges above: it seeks to optimize the usage of available resources by minimizing the carbon footprint while benefiting all stakeholders. The proposed architecture consists of three layers of agents, each pursuing different objectives. The first layer, comprised of prosumers and consumers, minimizes the total energy cost. The other two layers control the energy price to decrease the carbon impact while balancing the consumption and production of both renewable and conventional energy. This framework also takes into account fluctuations in energy demand and supply.
We consider a multi-agent delegated search without money, which is the first to study the multi-agent extension of Kleinberg and Kleinberg (EC'18). In our model, given a set of agents, each agent samples a fixed number of solutions, and privately sends a signal, e.g., a subset of solutions, to the principal. Then, the principal selects a final solution based on the agents' signals. Our model captures a variety of real-world scenarios, spanning classical economical applications to modern intelligent system. In stark contrast to single-agent setting by Kleinberg and Kleinberg (EC'18) with an approximate Bayesian mechanism, we show that there exist efficient approximate prior-independent mechanisms with both information and performance gain, thanks to the competitive tension between the agents. Interestingly, however, the amount of such a compelling power significantly varies with respect to the information available to the agents, and the degree of correlation between the principal's and the agent's utility. Technically, we conduct a comprehensive study on the multi-agent delegated search problem and derive several results on the approximation factors of Bayesian/prior-independent mechanisms in complete/incomplete information settings. As a special case of independent interest, we obtain comparative statics regarding the number of agents which implies the dominance of the multi-agent setting ($n \ge 2$) over the single-agent setting ($n=1$) in terms of the principal's utility. We further extend our problem by considering an examination cost of the mechanism and derive some analogous results in the complete information setting.
Graph Transformer is gaining increasing attention in the field of machine learning and has demonstrated state-of-the-art performance on benchmarks for graph representation learning. However, as current implementations of Graph Transformer primarily focus on learning representations of small-scale graphs, the quadratic complexity of the global self-attention mechanism presents a challenge for full-batch training when applied to larger graphs. Additionally, conventional sampling-based methods fail to capture necessary high-level contextual information, resulting in a significant loss of performance. In this paper, we introduce the Hierarchical Scalable Graph Transformer (HSGT) as a solution to these challenges. HSGT successfully scales the Transformer architecture to node representation learning tasks on large-scale graphs, while maintaining high performance. By utilizing graph hierarchies constructed through coarsening techniques, HSGT efficiently updates and stores multi-scale information in node embeddings at different levels. Together with sampling-based training methods, HSGT effectively captures and aggregates multi-level information on the hierarchical graph using only Transformer blocks. Empirical evaluations demonstrate that HSGT achieves state-of-the-art performance on large-scale benchmarks with graphs containing millions of nodes with high efficiency.
Fractional programming (FP) plays a crucial role in wireless network design because many relevant problems involve maximizing or minimizing ratio terms. Notice that the maximization case and the minimization case of FP cannot be converted to each other in general, so they have to be dealt with separately in most of the previous studies. Thus, an existing FP method for maximizing ratios typically does not work for the minimization case, and vice versa. However, the FP objective can be mixed max-and-min, e.g., one may wish to maximize the signal-to-interference-plus-noise ratio (SINR) of the legitimate receiver while minimizing that of the eavesdropper. We aim to fill the gap between max-FP and min-FP by devising a unified optimization framework. The main results are three-fold. First, we extend the existing max-FP technique called quadratic transform to the min-FP, and further develop a full generalization for the mixed case. Second. we provide a minorization-maximization (MM) interpretation of the proposed unified approach, thereby establishing its convergence and also obtaining a matrix extension; another result we obtain is a generalized Lagrangian dual transform which facilitates the solving of the logarithmic FP. Finally, we present three typical applications: the age-of-information (AoI) minimization, the Cramer-Rao bound minimization for sensing, and the secure data rate maximization, none of which can be efficiently addressed by the previous FP methods.
We propose LESS-VFL, a communication-efficient feature selection method for distributed systems with vertically partitioned data. We consider a system of a server and several parties with local datasets that share a sample ID space but have different feature sets. The parties wish to collaboratively train a model for a prediction task. As part of the training, the parties wish to remove unimportant features in the system to improve generalization, efficiency, and explainability. In LESS-VFL, after a short pre-training period, the server optimizes its part of the global model to determine the relevant outputs from party models. This information is shared with the parties to then allow local feature selection without communication. We analytically prove that LESS-VFL removes spurious features from model training. We provide extensive empirical evidence that LESS-VFL can achieve high accuracy and remove spurious features at a fraction of the communication cost of other feature selection approaches.
Remote monitoring systems analyze the environment dynamics in different smart industrial applications, such as occupational health and safety, and environmental monitoring. Specifically, in industrial Internet of Things (IoT) systems, the huge number of devices and the expected performance put pressure on resources, such as computational, network, and device energy. Distributed training of Machine and Deep Learning (ML/DL) models for intelligent industrial IoT applications is very challenging for resource limited devices over heterogeneous wireless networks (HetNets). Hierarchical Federated Learning (HFL) performs training at multiple layers offloading the tasks to nearby Multi-Access Edge Computing (MEC) units. In this paper, we propose a novel energy-efficient HFL framework enabled by Wireless Energy Transfer (WET) and designed for heterogeneous networks with massive Multiple-Input Multiple-Output (MIMO) wireless backhaul. Our energy-efficiency approach is formulated as a Mixed-Integer Non-Linear Programming (MINLP) problem, where we optimize the HFL device association and manage the wireless transmitted energy. However due to its high complexity, we design a Heuristic Resource Management Algorithm, namely H2RMA, that respects energy, channel quality, and accuracy constraints, while presenting a low computational complexity. We also improve the energy consumption of the network using an efficient device scheduling scheme. Finally, we investigate device mobility and its impact on the HFL performance. Our extensive experiments confirm the high performance of the proposed resource management approach in HFL over HetNets, in terms of training loss and grid energy costs.
Deploying active reflecting elements at the intelligent reflecting surface (IRS) increases signal amplification capability but incurs higher power consumption. Therefore, it remains a challenging and open problem to determine the optimal number of active/passive elements for maximizing energy efficiency (EE). To answer this question, we consider a hybrid active-passive IRS (H-IRS) assisted wireless communication system, where the H-IRS consists of both active and passive reflecting elements.Specifically, we study the optimization of the number of active/passive elements at the H-IRS to maximize EE. To this end, we first derive the closed-form expression for a near-optimal solution under the line-of-sight (LoS) channel case and obtain its optimal solution under the Rayleigh fading channel case. Then, an efficient algorithm is employed to obtain a high-quality sub-optimal solution for the EE maximization under the general Rician channel case. Simulation results demonstrate the effectiveness of the H-IRS for maximizing EE under different Rician factors and IRS locations.
Over the years, much research involving mobile computational entities has been performed. From modeling actual microscopic (and smaller) robots, to modeling software processes on a network, many important problems have been studied in this context. Gathering is one such fundamental problem in this area. The problem of gathering $k$ robots, initially arbitrarily placed on the nodes of an $n$-node graph, asks that these robots coordinate and communicate in a local manner, as opposed to global, to move around the graph, find each other, and settle down on a single node as fast as possible. A more difficult problem to solve is gathering with detection, where once the robots gather, they must subsequently realize that gathering has occurred and then terminate. In this paper, we propose a deterministic approach to solve gathering with detection for any arbitrary connected graph that is faster than existing deterministic solutions for even just gathering (without the requirement of detection) for arbitrary graphs. In contrast to earlier work on gathering, it leverages the fact that there are more robots present in the system to achieve gathering with detection faster than those previous papers that focused on just gathering. The state of the art solution for deterministic gathering~[Ta-Shma and Zwick, TALG, 2014] takes $\Tilde{O}$$(n^5 \log \ell)$ rounds, where $\ell$ is the smallest label among robots and $\Tilde{O}$ hides a polylog factor. We design a deterministic algorithm for gathering with detection with the following trade-offs depending on how many robots are present: (i) when $k \geq \lfloor n/2 \rfloor + 1$, the algorithm takes $O(n^3)$ rounds, (ii) when $k \geq \lfloor n/3 \rfloor + 1$, the algorithm takes $O(n^4 \log n)$ rounds, and (iii) otherwise, the algorithm takes $\Tilde{O}$$(n^5)$ rounds. The algorithm is not required to know $k$, but only $n$.
In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.
With the advent of 5G commercialization, the need for more reliable, faster, and intelligent telecommunication systems are envisaged for the next generation beyond 5G (B5G) radio access technologies. Artificial Intelligence (AI) and Machine Learning (ML) are not just immensely popular in the service layer applications but also have been proposed as essential enablers in many aspects of B5G networks, from IoT devices and edge computing to cloud-based infrastructures. However, most of the existing surveys in B5G security focus on the performance of AI/ML models and their accuracy, but they often overlook the accountability and trustworthiness of the models' decisions. Explainable AI (XAI) methods are promising techniques that would allow system developers to identify the internal workings of AI/ML black-box models. The goal of using XAI in the security domain of B5G is to allow the decision-making processes of the security of systems to be transparent and comprehensible to stakeholders making the systems accountable for automated actions. In every facet of the forthcoming B5G era, including B5G technologies such as RAN, zero-touch network management, E2E slicing, this survey emphasizes the role of XAI in them and the use cases that the general users would ultimately enjoy. Furthermore, we presented the lessons learned from recent efforts and future research directions on top of the currently conducted projects involving XAI.
Recently, graph neural networks (GNNs) have revolutionized the field of graph representation learning through effectively learned node embeddings, and achieved state-of-the-art results in tasks such as node classification and link prediction. However, current GNN methods are inherently flat and do not learn hierarchical representations of graphs---a limitation that is especially problematic for the task of graph classification, where the goal is to predict the label associated with an entire graph. Here we propose DiffPool, a differentiable graph pooling module that can generate hierarchical representations of graphs and can be combined with various graph neural network architectures in an end-to-end fashion. DiffPool learns a differentiable soft cluster assignment for nodes at each layer of a deep GNN, mapping nodes to a set of clusters, which then form the coarsened input for the next GNN layer. Our experimental results show that combining existing GNN methods with DiffPool yields an average improvement of 5-10% accuracy on graph classification benchmarks, compared to all existing pooling approaches, achieving a new state-of-the-art on four out of five benchmark data sets.