亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Adapting security architectures to common standards like IEC 62443 or ISO 27000 in the Industrial Internet of Things (IIoT) involves complex processes and compliance reports. Automatic monitoring of compliance status would enhance this process. Despite limited research, practical applications exist. This paper conducts a market study on providers implementing IEC 62443 in IIoT, aiming to formulate a catalog of monitorable attributes aligned with the standard. The study reveals challenges, such as a lack of formal separation in security architectures, limiting visibility. Despite these challenges, practical implementations share commonalities, providing insights into viable monitoring properties. The research serves as a crucial entry point into developing a comprehensive catalog of monitorable attributes for IEC 62443 standards in IIoT. Aligned with the IEC 62443 SR catalog of document 3-3, monitorable attributes are derived based on current research about IIoT security and Expert Knowledge. The provided tables serve as an exemplary extract, not exhaustive, defining three types of attributes based on their origin of creation.

相關內容

Processing 是一門開源編程語言和與之配(pei)套的集(ji)成開發環境(IDE)的名稱。Processing 在電(dian)子(zi)藝術(shu)和視覺設(she)計(ji)社區被用(yong)來教授(shou)編程基礎,并運(yun)用(yong)于大量的新(xin)媒體(ti)和互動藝術(shu)作品中。

Graph Neural Networks (GNNs) are able to achieve high classification accuracy on many important real world datasets, but provide no rigorous notion of predictive uncertainty. Quantifying the confidence of GNN models is difficult due to the dependence between datapoints induced by the graph structure. We leverage recent advances in conformal prediction to construct prediction sets for node classification in inductive learning scenarios. We do this by taking an existing approach for conformal classification that relies on \textit{exchangeable} data and modifying it by appropriately weighting the conformal scores to reflect the network structure. We show through experiments on standard benchmark datasets using popular GNN models that our approach provides tighter and better calibrated prediction sets than a naive application of conformal prediction.

The Self-Sovereign Identity (SSI) is a decentralized paradigm enabling full control over the data used to build and prove the identity. In Internet of Things networks with security requirements, the Self-Sovereign Identity can play a key role and bring benefits with respect to centralized identity solutions. The challenge is to make the SSI compatible with resource-constraint IoT networks. In line with this objective, the paper proposes and discusses an alternative (mutual) authentication process for IoT nodes under the same administration domain. The main idea is to combine the Decentralized IDentifier (DID)-based verification of private key ownership with the verification of a proof that the DID belongs to an evolving trusted set. The solution is built around the proof of membership notion. The paper analyzes two membership solutions, a novel solution designed by the Authors based on Merkle trees and a second one based on the adaptation of Boneh, Boyen and Shacham (BBS) group signature scheme. The paper concludes with a performance estimation and a comparative analysis.

Numerous solutions are proposed for the Traffic Signal Control (TSC) tasks aiming to provide efficient transportation and mitigate congestion waste. In recent, promising results have been attained by Reinforcement Learning (RL) methods through trial and error in simulators, bringing confidence in solving cities' congestion headaches. However, there still exist performance gaps when simulator-trained policies are deployed to the real world. This issue is mainly introduced by the system dynamic difference between the training simulator and the real-world environments. The Large Language Models (LLMs) are trained on mass knowledge and proved to be equipped with astonishing inference abilities. In this work, we leverage LLMs to understand and profile the system dynamics by a prompt-based grounded action transformation. Accepting the cloze prompt template, and then filling in the answer based on accessible context, the pre-trained LLM's inference ability is exploited and applied to understand how weather conditions, traffic states, and road types influence traffic dynamics, being aware of this, the policies' action is taken and grounded based on realistic dynamics, thus help the agent learn a more realistic policy. We conduct experiments using DQN to show the effectiveness of the proposed PromptGAT's ability in mitigating the performance gap from simulation to reality (sim-to-real).

We propose a novel set of Poisson Cluster Process (PCP) models to detect Ultra-Diffuse Galaxies (UDGs), a class of extremely faint, enigmatic galaxies of substantial interest in modern astrophysics. We model the unobserved UDG locations as parent points in a PCP, and infer their positions based on the observed spatial point patterns of their old star cluster systems. Many UDGs have somewhere from a few to hundreds of these old star clusters, which we treat as offspring points in our models. We also present a new framework to construct a marked PCP model using the marks of star clusters. The marked PCP model may enhance the detection of UDGs and offers broad applicability to problems in other disciplines. To assess the overall model performance, we design an innovative assessment tool for spatial prediction problems where only point-referenced ground truth is available, overcoming the limitation of standard ROC analyses where spatial Boolean reference maps are required. We construct a bespoke blocked Gibbs adaptive spatial birth-death-move MCMC algorithm to infer the locations of UDGs using real data from a \textit{Hubble Space Telescope} imaging survey. Based on our performance assessment tool, our novel models significantly outperform existing approaches using the Log-Gaussian Cox Process. We also obtained preliminary evidence that the marked PCP model improves UDG detection performance compared to the model without marks. Furthermore, we find evidence of a potential new ``dark galaxy'' that was not detected by previous methods.

We present Modular Polynomial (MP) Codes for Secure Distributed Matrix Multiplication (SDMM). The construction is based on the observation that one can decode certain proper subsets of the coefficients of a polynomial with fewer evaluations than is necessary to interpolate the entire polynomial. We also present Generalized Gap Additive Secure Polynomial (GGASP) codes. Both MP and GGASP codes are shown experimentally to perform favorably in terms of recovery threshold when compared to other comparable polynomials codes for SDMM which use the grid partition. Both MP and GGASP codes achieve the recovery threshold of Entangled Polynomial Codes for robustness against stragglers, but MP codes can decode below this recovery threshold depending on the set of worker nodes which fails. The decoding complexity of MP codes is shown to be lower than other approaches in the literature, due to the user not being tasked with interpolating an entire polynomial.

This paper presents the design and implementation of a Right Invariant Extended Kalman Filter (RIEKF) for estimating the states of the kinematic base of the Surena V humanoid robot. The state representation of the robot is defined on the Lie group $SE_4(3)$, encompassing the position, velocity, and orientation of the base, as well as the position of the left and right feet. In addition, we incorporated IMU biases as concatenated states within the filter. The prediction step of the RIEKF utilizes IMU equations, while the update step incorporates forward kinematics. To evaluate the performance of the RIEKF, we conducted experiments using the Choreonoid dynamic simulation framework and compared it against a Quaternion-based Extended Kalman Filter (QEKF). The results of the analysis demonstrate that the RIEKF exhibits reduced drift in localization and achieves estimation convergence in a shorter time compared to the QEKF. These findings highlight the effectiveness of the proposed RIEKF for accurate state estimation of the kinematic base in humanoid robotics.

This study introduces an innovative approach that integrates community detection algorithms with Graph Neural Network (GNN) models to enhance link prediction in scientific literature networks. We specifically focus on the utilization of the Louvain community detection algorithm to uncover latent community structures within these networks, which are then incorporated into GNN architectures to predict potential links. Our methodology demonstrates the importance of understanding community dynamics in complex networks and leverages the strengths of both community detection and GNNs to improve predictive accuracy. Through extensive experiments on bipartite graphs representing scientific collaborations and citations, our approach not only highlights the synergy between community detection and GNNs but also addresses some of the prevalent challenges in link prediction, such as scalability and resolution limits. The results suggest that incorporating community-level information can significantly enhance the performance of GNNs in link prediction tasks. This work contributes to the evolving field of network science by offering a novel perspective on integrating advanced machine learning techniques with traditional network analysis methods to better understand and predict the intricate patterns of scientific collaborations.

Since the launch of ChatGPT, a powerful AI Chatbot developed by OpenAI, large language models (LLMs) have made significant advancements in both academia and industry, bringing about a fundamental engineering paradigm shift in many areas. While LLMs are powerful, it is also crucial to best use their power where "prompt'' plays a core role. However, the booming LLMs themselves, including excellent APIs like ChatGPT, have several inherent limitations: 1) temporal lag of training data, and 2) the lack of physical capabilities to perform external actions. Recently, we have observed the trend of utilizing prompt-based tools to better utilize the power of LLMs for downstream tasks, but a lack of systematic literature and standardized terminology, partly due to the rapid evolution of this field. Therefore, in this work, we survey related prompting tools and promote the concept of the "Prompting Framework" (PF), i.e. the framework for managing, simplifying, and facilitating interaction with large language models. We define the lifecycle of the PF as a hierarchical structure, from bottom to top, namely: Data Level, Base Level, Execute Level, and Service Level. We also systematically depict the overall landscape of the emerging PF field and discuss potential future research and challenges. To continuously track the developments in this area, we maintain a repository at //github.com/lxx0628/Prompting-Framework-Survey, which can be a useful resource sharing platform for both academic and industry in this field.

Existing knowledge graph (KG) embedding models have primarily focused on static KGs. However, real-world KGs do not remain static, but rather evolve and grow in tandem with the development of KG applications. Consequently, new facts and previously unseen entities and relations continually emerge, necessitating an embedding model that can quickly learn and transfer new knowledge through growth. Motivated by this, we delve into an expanding field of KG embedding in this paper, i.e., lifelong KG embedding. We consider knowledge transfer and retention of the learning on growing snapshots of a KG without having to learn embeddings from scratch. The proposed model includes a masked KG autoencoder for embedding learning and update, with an embedding transfer strategy to inject the learned knowledge into the new entity and relation embeddings, and an embedding regularization method to avoid catastrophic forgetting. To investigate the impacts of different aspects of KG growth, we construct four datasets to evaluate the performance of lifelong KG embedding. Experimental results show that the proposed model outperforms the state-of-the-art inductive and lifelong embedding baselines.

Named entity recognition (NER) is the task to identify text spans that mention named entities, and to classify them into predefined categories such as person, location, organization etc. NER serves as the basis for a variety of natural language applications such as question answering, text summarization, and machine translation. Although early NER systems are successful in producing decent recognition accuracy, they often require much human effort in carefully designing rules or features. In recent years, deep learning, empowered by continuous real-valued vector representations and semantic composition through nonlinear processing, has been employed in NER systems, yielding stat-of-the-art performance. In this paper, we provide a comprehensive review on existing deep learning techniques for NER. We first introduce NER resources, including tagged NER corpora and off-the-shelf NER tools. Then, we systematically categorize existing works based on a taxonomy along three axes: distributed representations for input, context encoder, and tag decoder. Next, we survey the most representative methods for recent applied techniques of deep learning in new NER problem settings and applications. Finally, we present readers with the challenges faced by NER systems and outline future directions in this area.

北京阿比特科技有限公司