亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

It is essential to select efficient topology of parameterized quantum circuits (PQCs) in variational quantum algorithms (VQAs). However, there are problems in current circuits, i.e. optimization difficulties caused by too many parameters or performance is hard to guarantee. How to reduce the number of parameters (number of single-qubit rotation gates and 2-qubit gates) in PQCs without reducing the performance has become a new challenge. To solve this problem, we propose a novel topology, called Block-Ring (BR) topology, to construct the PQCs. This topology allocate all qubits to several blocks, all-to-all mode is adopt inside each block and ring mode is applied to connect different blocks. Compared with the pure all-to-all topology circuits which own the best power, BR topology have similar performance and the number of parameters and 2-qubit gate reduced from 0(n^2) to 0(mn) , m is a hyperparameter set by ourselves. Besides, we compared BR topology with other topology circuits in terms of expressibility and entangling capability. Considering the effects of different 2-qubit gates on circuits, we also make a distinction between controlled X-rotation gates and controlled Z-rotation gates. Finally, the 1- and 2-layer configurations of PQCs are taken into consideration as well, which shows the BR's performance improvement in the condition of multilayer circuits.

相關內容

Opinion dynamics is a central subject of computational social science, and various models have been developed to understand the evolution and formulation of opinions. Existing models mainly focus on opinion dynamics on graphs that only capture pairwise interactions between agents. In this paper, we extend the popular Friedkin-Johnsen model for opinion dynamics on graphs to hypergraphs, which describe higher-order interactions occurring frequently on real networks, especially social networks. To achieve this, based on the fact that for linear dynamics the multi-way interactions can be reduced to effective pairwise node interactions, we propose a method to decode the group interactions encoded in hyperedges by undirected edges or directed edges in graphs. We then show that higher-order interactions play an important role in the opinion dynamics, since the overall steady-state expressed opinion and polarization differ greatly from those without group interactions. We also provide an interpretation of the equilibrium expressed opinion from the perspective of the spanning converging forest, based on which we design a fast sampling algorithm to approximately evaluate the overall opinion and opinion polarization on directed weighted graphs. Finally, we conduct experiments on real-world hypergraph datasets, demonstrating the performance of our algorithm.

Different notions of the consistency of obligations collapse in standard deontic logic. In justification logics, which feature explicit reasons for obligations, the situation is different. Their strength depends on a constant specification and on the available set of operations for combining different reasons. We present different consistency principles in justification logic and compare their logical strength. We propose a novel semantics for which justification logics with the explicit version of axiom D, jd, are complete for arbitrary constant specifications. We then discuss the philosophical implications with regard to some deontic paradoxes.

We introduce a neural-preconditioned iterative solver for Poisson equations with mixed boundary conditions. The Poisson equation is ubiquitous in scientific computing: it governs a wide array of physical phenomena, arises as a subproblem in many numerical algorithms, and serves as a model problem for the broader class of elliptic PDEs. The most popular Poisson discretizations yield large sparse linear systems. At high resolution, and for performance-critical applications, iterative solvers can be advantageous for these -- but only when paired with powerful preconditioners. The core of our solver is a neural network trained to approximate the inverse of a discrete structured-grid Laplace operator for a domain of arbitrary shape and with mixed boundary conditions. The structure of this problem motivates a novel network architecture that we demonstrate is highly effective as a preconditioner even for boundary conditions outside the training set. We show that on challenging test cases arising from an incompressible fluid simulation, our method outperforms state-of-the-art solvers like algebraic multigrid as well as some recent neural preconditioners.

Large Language Models (LLMs) have the ability to solve a variety of tasks, such as text summarization and mathematical questions, just out of the box, but they are often trained with a single task in mind. Due to high computational costs, the current trend is to use prompt instruction tuning to better adjust monolithic, pretrained LLMs for new -- but often individual -- downstream tasks. Thus, how one would expand prompt tuning to handle -- concomitantly -- heterogeneous tasks and data distributions is a widely open question. To address this gap, we suggest the use of \emph{Mixture of Prompts}, or MoPs, associated with smart gating functionality: the latter -- whose design is one of the contributions of this paper -- can identify relevant skills embedded in different groups of prompts and dynamically assign combined experts (i.e., collection of prompts), based on the target task. Additionally, MoPs are empirically agnostic to any model compression technique applied -- for efficiency reasons -- as well as instruction data source and task composition. In practice, MoPs can simultaneously mitigate prompt training "interference" in multi-task, multi-source scenarios (e.g., task and data heterogeneity across sources), as well as possible implications from model approximations. As a highlight, MoPs manage to decrease final perplexity from $\sim20\%$ up to $\sim70\%$, as compared to baselines, in the federated scenario, and from $\sim 3\%$ up to $\sim30\%$ in the centralized scenario.

Physically informed neural networks (PINNs) are a promising emerging method for solving differential equations. As in many other deep learning approaches, the choice of PINN design and training protocol requires careful craftsmanship. Here, we suggest a comprehensive theoretical framework that sheds light on this important problem. Leveraging an equivalence between infinitely over-parameterized neural networks and Gaussian process regression (GPR), we derive an integro-differential equation that governs PINN prediction in the large data-set limit -- the neurally-informed equation. This equation augments the original one by a kernel term reflecting architecture choices and allows quantifying implicit bias induced by the network via a spectral decomposition of the source term in the original differential equation.

Quantization has emerged as a promising direction for model compression. Recently, data-free quantization has been widely studied as a promising method to avoid privacy concerns, which synthesizes images as an alternative to real training data. Existing methods use classification loss to ensure the reliability of the synthesized images. Unfortunately, even if these images are well-classified by the pre-trained model, they still suffer from low semantics and homogenization issues. Intuitively, these low-semantic images are sensitive to perturbations, and the pre-trained model tends to have inconsistent output when the generator synthesizes an image with poor semantics. To this end, we propose Robustness-Guided Image Synthesis (RIS), a simple but effective method to enrich the semantics of synthetic images and improve image diversity, further boosting the performance of downstream data-free compression tasks. Concretely, we first introduce perturbations on input and model weight, then define the inconsistency metrics at feature and prediction levels before and after perturbations. On the basis of inconsistency on two levels, we design a robustness optimization objective to enhance the semantics of synthetic images. Moreover, we also make our approach diversity-aware by forcing the generator to synthesize images with small correlations in the label space. With RIS, we achieve state-of-the-art performance for various settings on data-free quantization and can be extended to other data-free compression tasks.

We propose a federated averaging Langevin algorithm (FA-LD) for uncertainty quantification and mean predictions with distributed clients. In particular, we generalize beyond normal posterior distributions and consider a general class of models. We develop theoretical guarantees for FA-LD for strongly log-concave distributions with non-i.i.d data and study how the injected noise and the stochastic-gradient noise, the heterogeneity of data, and the varying learning rates affect the convergence. Such an analysis sheds light on the optimal choice of local updates to minimize communication costs. Important to our approach is that the communication efficiency does not deteriorate with the injected noise in the Langevin algorithms. In addition, we examine in our FA-LD algorithm both independent and correlated noise used over different clients. We observe there is a trade-off between the pairs among communication, accuracy, and data privacy. As local devices may become inactive in federated networks, we also show convergence results based on different averaging schemes where only partial device updates are available. In such a case, we discover an additional bias that does not decay to zero.

We propose a graphical structure for structural equation models that is stable under marginalization under linearity and Gaussianity assumptions. We show that computing the maximum likelihood estimation of this model is equivalent to training a neural network. We implement a GPU-based algorithm that computes the maximum likelihood estimation of these models.

Diffusion models are a powerful class of generative models which simulate stochastic differential equations (SDEs) to generate data from noise. Although diffusion models have achieved remarkable progress in recent years, they have limitations in the unpaired image-to-image translation tasks due to the Gaussian prior assumption. Schr\"odinger Bridge (SB), which learns an SDE to translate between two arbitrary distributions, have risen as an attractive solution to this problem. However, none of SB models so far have been successful at unpaired translation between high-resolution images. In this work, we propose the Unpaired Neural Schr\"odinger Bridge (UNSB), which expresses SB problem as a sequence of adversarial learning problems. This allows us to incorporate advanced discriminators and regularization to learn a SB between unpaired data. We demonstrate that UNSB is scalable and successfully solves various unpaired image-to-image translation tasks. Code: \url{//github.com/cyclomon/UNSB}

Pre-trained Language Models (PLMs) which are trained on large text corpus via self-supervised learning method, have yielded promising performance on various tasks in Natural Language Processing (NLP). However, though PLMs with huge parameters can effectively possess rich knowledge learned from massive training text and benefit downstream tasks at the fine-tuning stage, they still have some limitations such as poor reasoning ability due to the lack of external knowledge. Research has been dedicated to incorporating knowledge into PLMs to tackle these issues. In this paper, we present a comprehensive review of Knowledge-Enhanced Pre-trained Language Models (KE-PLMs) to provide a clear insight into this thriving field. We introduce appropriate taxonomies respectively for Natural Language Understanding (NLU) and Natural Language Generation (NLG) to highlight these two main tasks of NLP. For NLU, we divide the types of knowledge into four categories: linguistic knowledge, text knowledge, knowledge graph (KG), and rule knowledge. The KE-PLMs for NLG are categorized into KG-based and retrieval-based methods. Finally, we point out some promising future directions of KE-PLMs.

北京阿比特科技有限公司