Model merging aims to cheaply combine individual task-specific models into a single multitask model. In this work, we view past merging methods as leveraging different notions of a ''task subspace'' in which models are matched before being merged. We connect the task subspace of a given model to its loss landscape and formalize how this approach to model merging can be seen as solving a linear system of equations. While past work has generally been limited to linear systems that have a closed-form solution, we consider using the conjugate gradient method to find a solution. We show that using the conjugate gradient method can outperform closed-form solutions, enables merging via linear systems that are otherwise intractable to solve, and flexibly allows choosing from a wide variety of initializations and estimates for the ''task subspace''. We ultimately demonstrate that our merging framework called ''Matching Models in their Task Subspace'' (MaTS) achieves state-of-the-art results in multitask and intermediate-task model merging. We release all of the code and checkpoints used in our work at //github.com/r-three/mats.
Despite the remarkable performance of generative large language models (LLMs) on abstractive summarization, they face two significant challenges: their considerable size and tendency to hallucinate. Hallucinations are concerning because they erode reliability and raise safety issues. Pruning is a technique that reduces model size by removing redundant weights, enabling more efficient sparse inference. Pruned models yield downstream task performance comparable to the original, making them ideal alternatives when operating on a limited budget. However, the effect that pruning has upon hallucinations in abstractive summarization with LLMs has yet to be explored. In this paper, we provide an extensive empirical study across five summarization datasets, two state-of-the-art pruning methods, and five instruction-tuned LLMs. Surprisingly, we find that hallucinations from pruned LLMs are less prevalent than the original models. Our analysis suggests that pruned models tend to depend more on the source document for summary generation. This leads to a higher lexical overlap between the generated summary and the source document, which could be a reason for the reduction in hallucination risk.
In the realm of recommender systems, handling noisy implicit feedback is a prevalent challenge. While most research efforts focus on mitigating noise through data cleaning methods like resampling and reweighting, these approaches often rely on heuristic assumptions. Alternatively, model perspective denoising strategies actively incorporate noise into user-item interactions, aiming to bolster the model's inherent denoising capabilities. Nonetheless, this type of denoising method presents substantial challenges to the capacity of the recommender model to accurately identify and represent noise patterns. To overcome these hurdles, we introduce a plug-in diffusion model for embedding denoising in recommendation system, which employs a multi-step denoising approach based on diffusion models to foster robust representation learning of embeddings. Our model operates by introducing controlled Gaussian noise into user and item embeddings derived from various recommender systems during the forward phase. Subsequently, it iteratively eliminates this noise in the reverse denoising phase, thereby augmenting the embeddings' resilience to noisy feedback. The primary challenge in this process is determining direction and an optimal starting point for the denoising process. To address this, we incorporate a specialized denoising module that utilizes collaborative data as a guide for the denoising process. Furthermore, during the inference phase, we employ the average of item embeddings previously favored by users as the starting point to facilitate ideal item generation. Our thorough evaluations across three datasets and in conjunction with three classic backend models confirm its superior performance.
In this work, we propose the use of a causal collider structured model to describe the underlying data generative process assumptions in disentangled representation learning. This extends the conventional i.i.d. factorization assumption model $p(\mathbf{y}) = \prod_{i} p(\mathbf{y}_i )$, inadequate to handle learning from biased datasets (e.g., with sampling selection bias). The collider structure, explains that conditional dependencies between the underlying generating variables may be exist, even when these are in reality unrelated, complicating disentanglement. Under the rubric of causal inference, we show this issue can be reconciled under the condition of causal identification; attainable from data and a combination of constraints, aimed at controlling the dependencies characteristic of the \textit{collider} model. For this, we propose regularization by identification (ReI), a modular regularization engine designed to align the behavior of large scale generative models with the disentanglement constraints imposed by causal identification. Empirical evidence on standard benchmarks demonstrates the superiority of ReI in learning disentangled representations in a variational framework. In a real-world dataset we additionally show that our framework, results in interpretable representations robust to out-of-distribution examples and that align with the true expected effect from domain knowledge.
Causal effect estimation from observational data is a fundamental task in empirical sciences. It becomes particularly challenging when unobserved confounders are involved in a system. This paper focuses on front-door adjustment -- a classic technique which, using observed mediators allows to identify causal effects even in the presence of unobserved confounding. While the statistical properties of the front-door estimation are quite well understood, its algorithmic aspects remained unexplored for a long time. In 2022, Jeong, Tian, and Bareinboim presented the first polynomial-time algorithm for finding sets satisfying the front-door criterion in a given directed acyclic graph (DAG), with an $O(n^3(n+m))$ run time, where $n$ denotes the number of variables and $m$ the number of edges of the causal graph. In our work, we give the first linear-time, i.e., $O(n+m)$, algorithm for this task, which thus reaches the asymptotically optimal time complexity. This result implies an $O(n(n+m))$ delay enumeration algorithm of all front-door adjustment sets, again improving previous work by a factor of $n^3$. Moreover, we provide the first linear-time algorithm for finding a minimal front-door adjustment set. We offer implementations of our algorithms in multiple programming languages to facilitate practical usage and empirically validate their feasibility, even for large graphs.
The successful portrayal of personality in digital characters improves communication and immersion. Current research focuses on expressing personality through modifying animations using heuristic rules or data-driven models. While studies suggest motion style highly influences the apparent personality, the role of appearance can be similarly essential. This work analyzes the influence of movement and appearance on the perceived personality of short videos altered by motion transfer networks. We label the personalities in conference video clips with a user study to determine the samples that best represent the Five-Factor model's high, neutral, and low traits. We alter these videos using the Thin-Plate Spline Motion Model, utilizing the selected samples as the source and driving inputs. We follow five different cases to study the influence of motion and appearance on personality perception. Our comparative study reveals that motion and appearance influence different factors: motion strongly affects perceived extraversion, and appearance helps convey agreeableness and neuroticism.
The majority of the research on the quantization of Deep Neural Networks (DNNs) is focused on reducing the precision of tensors visible by high-level frameworks (e.g., weights, activations, and gradients). However, current hardware still relies on high-accuracy core operations. Most significant is the operation of accumulating products. This high-precision accumulation operation is gradually becoming the main computational bottleneck. This is because, so far, the usage of low-precision accumulators led to a significant degradation in performance. In this work, we present a simple method to train and fine-tune high-end DNNs, to allow, for the first time, utilization of cheaper, $12$-bits accumulators, with no significant degradation in accuracy. Lastly, we show that as we decrease the accumulation precision further, using fine-grained gradient approximations can improve the DNN accuracy.
In this study, we introduce three distinct testing methods for testing alpha in high dimensional linear factor pricing model that deals with dependent data. The first method is a sum-type test procedure, which exhibits high performance when dealing with dense alternatives. The second method is a max-type test procedure, which is particularly effective for sparse alternatives. For a broader range of alternatives, we suggest a Cauchy combination test procedure. This is predicated on the asymptotic independence of the sum-type and max-type test statistics. Both simulation studies and practical data application demonstrate the effectiveness of our proposed methods when handling dependent observations.
Following unprecedented success on the natural language tasks, Transformers have been successfully applied to several computer vision problems, achieving state-of-the-art results and prompting researchers to reconsider the supremacy of convolutional neural networks (CNNs) as {de facto} operators. Capitalizing on these advances in computer vision, the medical imaging field has also witnessed growing interest for Transformers that can capture global context compared to CNNs with local receptive fields. Inspired from this transition, in this survey, we attempt to provide a comprehensive review of the applications of Transformers in medical imaging covering various aspects, ranging from recently proposed architectural designs to unsolved issues. Specifically, we survey the use of Transformers in medical image segmentation, detection, classification, reconstruction, synthesis, registration, clinical report generation, and other tasks. In particular, for each of these applications, we develop taxonomy, identify application-specific challenges as well as provide insights to solve them, and highlight recent trends. Further, we provide a critical discussion of the field's current state as a whole, including the identification of key challenges, open problems, and outlining promising future directions. We hope this survey will ignite further interest in the community and provide researchers with an up-to-date reference regarding applications of Transformer models in medical imaging. Finally, to cope with the rapid development in this field, we intend to regularly update the relevant latest papers and their open-source implementations at \url{//github.com/fahadshamshad/awesome-transformers-in-medical-imaging}.
In the era of deep learning, modeling for most NLP tasks has converged to several mainstream paradigms. For example, we usually adopt the sequence labeling paradigm to solve a bundle of tasks such as POS-tagging, NER, Chunking, and adopt the classification paradigm to solve tasks like sentiment analysis. With the rapid progress of pre-trained language models, recent years have observed a rising trend of Paradigm Shift, which is solving one NLP task by reformulating it as another one. Paradigm shift has achieved great success on many tasks, becoming a promising way to improve model performance. Moreover, some of these paradigms have shown great potential to unify a large number of NLP tasks, making it possible to build a single model to handle diverse tasks. In this paper, we review such phenomenon of paradigm shifts in recent years, highlighting several paradigms that have the potential to solve different NLP tasks.
We propose a novel method for automatic reasoning on knowledge graphs based on debate dynamics. The main idea is to frame the task of triple classification as a debate game between two reinforcement learning agents which extract arguments -- paths in the knowledge graph -- with the goal to promote the fact being true (thesis) or the fact being false (antithesis), respectively. Based on these arguments, a binary classifier, called the judge, decides whether the fact is true or false. The two agents can be considered as sparse, adversarial feature generators that present interpretable evidence for either the thesis or the antithesis. In contrast to other black-box methods, the arguments allow users to get an understanding of the decision of the judge. Since the focus of this work is to create an explainable method that maintains a competitive predictive accuracy, we benchmark our method on the triple classification and link prediction task. Thereby, we find that our method outperforms several baselines on the benchmark datasets FB15k-237, WN18RR, and Hetionet. We also conduct a survey and find that the extracted arguments are informative for users.