亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Exploiting the properties of quantum information to the benefit of machine learning models is perhaps the most active field of research in quantum computation. This interest has supported the development of a multitude of software frameworks (e.g. Qiskit, Pennylane, Braket) to implement, simulate, and execute quantum algorithms. Most of them allow us to define quantum circuits, run basic quantum algorithms, and access low-level primitives depending on the hardware such software is supposed to run. For most experiments, these frameworks have to be manually integrated within a larger machine learning software pipeline. The researcher is in charge of knowing different software packages, integrating them through the development of long code scripts, analyzing the results, and generating the plots. Long code often leads to erroneous applications, due to the average number of bugs growing proportional with respect to the program length. Moreover, other researchers will struggle to understand and reproduce the experiment, due to the need to be familiar with all the different software frameworks involved in the code script. We propose QuASK, an open-source quantum machine learning framework written in Python that aids the researcher in performing their experiments, with particular attention to quantum kernel techniques. QuASK can be used as a command-line tool to download datasets, pre-process them, quantum machine learning routines, analyze and visualize the results. QuASK implements most state-of-the-art algorithms to analyze the data through quantum kernels, with the possibility to use projected kernels, (gradient-descent) trainable quantum kernels, and structure-optimized quantum kernels. Our framework can also be used as a library and integrated into pre-existing software, maximizing code reuse.

相關內容

機器學(xue)(xue)習(xi)(xi)(Machine Learning)是一個(ge)研究(jiu)(jiu)計算學(xue)(xue)習(xi)(xi)方(fang)(fang)法(fa)(fa)的(de)(de)(de)國際論壇。該(gai)雜志發表(biao)文(wen)章,報告廣泛的(de)(de)(de)學(xue)(xue)習(xi)(xi)方(fang)(fang)法(fa)(fa)應(ying)用于(yu)(yu)各種學(xue)(xue)習(xi)(xi)問(wen)題的(de)(de)(de)實質性(xing)結果。該(gai)雜志的(de)(de)(de)特色(se)論文(wen)描述研究(jiu)(jiu)的(de)(de)(de)問(wen)題和(he)方(fang)(fang)法(fa)(fa),應(ying)用研究(jiu)(jiu)和(he)研究(jiu)(jiu)方(fang)(fang)法(fa)(fa)的(de)(de)(de)問(wen)題。有關(guan)學(xue)(xue)習(xi)(xi)問(wen)題或(huo)方(fang)(fang)法(fa)(fa)的(de)(de)(de)論文(wen)通過實證(zheng)研究(jiu)(jiu)、理論分析(xi)或(huo)與(yu)心理現象的(de)(de)(de)比較提供了堅實的(de)(de)(de)支持。應(ying)用論文(wen)展示了如何應(ying)用學(xue)(xue)習(xi)(xi)方(fang)(fang)法(fa)(fa)來解決重(zhong)要的(de)(de)(de)應(ying)用問(wen)題。研究(jiu)(jiu)方(fang)(fang)法(fa)(fa)論文(wen)改進了機器學(xue)(xue)習(xi)(xi)的(de)(de)(de)研究(jiu)(jiu)方(fang)(fang)法(fa)(fa)。所有的(de)(de)(de)論文(wen)都以(yi)其他研究(jiu)(jiu)人(ren)員(yuan)可以(yi)驗證(zheng)或(huo)復制的(de)(de)(de)方(fang)(fang)式(shi)描述了支持證(zheng)據。論文(wen)還詳細說明了學(xue)(xue)習(xi)(xi)的(de)(de)(de)組成部分,并討論了關(guan)于(yu)(yu)知(zhi)識表(biao)示和(he)性(xing)能任務(wu)的(de)(de)(de)假設。 官網地址:

We introduce a general framework for active learning in regression problems. Our framework extends the standard setup by allowing for general types of data, rather than merely pointwise samples of the target function. This generalization covers many cases of practical interest, such as data acquired in transform domains (e.g., Fourier data), vector-valued data (e.g., gradient-augmented data), data acquired along continuous curves, and, multimodal data (i.e., combinations of different types of measurements). Our framework considers random sampling according to a finite number of sampling measures and arbitrary nonlinear approximation spaces (model classes). We introduce the concept of generalized Christoffel functions and show how these can be used to optimize the sampling measures. We prove that this leads to near-optimal sample complexity in various important cases. This paper focuses on applications in scientific computing, where active learning is often desirable, since it is usually expensive to generate data. We demonstrate the efficacy of our framework for gradient-augmented learning with polynomials, Magnetic Resonance Imaging (MRI) using generative models and adaptive sampling for solving PDEs using Physics-Informed Neural Networks (PINNs).

Distributed quantum computing, particularly distributed quantum machine learning, has gained substantial prominence for its capacity to harness the collective power of distributed quantum resources, transcending the limitations of individual quantum nodes. Meanwhile, the critical concern of privacy within distributed computing protocols remains a significant challenge, particularly in standard classical federated learning (FL) scenarios where data of participating clients is susceptible to leakage via gradient inversion attacks by the server. This paper presents innovative quantum protocols with quantum communication designed to address the FL problem, strengthen privacy measures, and optimize communication efficiency. In contrast to previous works that leverage expressive variational quantum circuits or differential privacy techniques, we consider gradient information concealment using quantum states and propose two distinct FL protocols, one based on private inner-product estimation and the other on incremental learning. These protocols offer substantial advancements in privacy preservation with low communication resources, forging a path toward efficient quantum communication-assisted FL protocols and contributing to the development of secure distributed quantum machine learning, thus addressing critical privacy concerns in the quantum computing era.

There is an increasing consensus about the effectiveness of user-centred approaches in the explainable artificial intelligence (XAI) field. Indeed, the number and complexity of personalised and user-centred approaches to XAI have rapidly grown in recent years. Often, these works have a two-fold objective: (1) proposing novel XAI techniques able to consider the users and (2) assessing the \textit{goodness} of such techniques with respect to others. From these new works, it emerged that user-centred approaches to XAI positively affect the interaction between users and systems. However, so far, the goodness of XAI systems has been measured through indirect measures, such as performance. In this paper, we propose an assessment task to objectively and quantitatively measure the goodness of XAI systems in terms of their \textit{information power}, which we intended as the amount of information the system provides to the users during the interaction. Moreover, we plan to use our task to objectively compare two XAI techniques in a human-robot decision-making task to understand deeper whether user-centred approaches are more informative than classical ones.

Quantum computing is the process of performing calculations using quantum mechanics. This field studies the quantum behavior of certain subatomic particles for subsequent use in performing calculations, as well as for large-scale information processing. These capabilities can give quantum computers an advantage in terms of computational time and cost over classical computers. Nowadays, there are scientific challenges that are impossible to perform by classical computation due to computational complexity or the time the calculation would take, and quantum computation is one of the possible answers. However, current quantum devices have not yet the necessary qubits and are not fault-tolerant enough to achieve these goals. Nonetheless, there are other fields like machine learning or chemistry where quantum computation could be useful with current quantum devices. This manuscript aims to present a Systematic Literature Review of the papers published between 2017 and 2023 to identify, analyze and classify the different algorithms used in quantum machine learning and their applications. Consequently, this study identified 94 articles that used quantum machine learning techniques and algorithms. The main types of found algorithms are quantum implementations of classical machine learning algorithms, such as support vector machines or the k-nearest neighbor model, and classical deep learning algorithms, like quantum neural networks. Many articles try to solve problems currently answered by classical machine learning but using quantum devices and algorithms. Even though results are promising, quantum machine learning is far from achieving its full potential. An improvement in the quantum hardware is required since the existing quantum computers lack enough quality, speed, and scale to allow quantum computing to achieve its full potential.

The prediction accuracy of machine learning methods is steadily increasing, but the calibration of their uncertainty predictions poses a significant challenge. Numerous works focus on obtaining well-calibrated predictive models, but less is known about reliably assessing model calibration. This limits our ability to know when algorithms for improving calibration have a real effect, and when their improvements are merely artifacts due to random noise in finite datasets. In this work, we consider detecting mis-calibration of predictive models using a finite validation dataset as a hypothesis testing problem. The null hypothesis is that the predictive model is calibrated, while the alternative hypothesis is that the deviation from calibration is sufficiently large. We find that detecting mis-calibration is only possible when the conditional probabilities of the classes are sufficiently smooth functions of the predictions. When the conditional class probabilities are H\"older continuous, we propose T-Cal, a minimax optimal test for calibration based on a debiased plug-in estimator of the $\ell_2$-Expected Calibration Error (ECE). We further propose Adaptive T-Cal, a version that is adaptive to unknown smoothness. We verify our theoretical findings with a broad range of experiments, including with several popular deep neural net architectures and several standard post-hoc calibration methods. T-Cal is a practical general-purpose tool, which -- combined with classical tests for discrete-valued predictors -- can be used to test the calibration of virtually any probabilistic classification method.

Most state-of-the-art machine learning techniques revolve around the optimisation of loss functions. Defining appropriate loss functions is therefore critical to successfully solving problems in this field. We present a survey of the most commonly used loss functions for a wide range of different applications, divided into classification, regression, ranking, sample generation and energy based modelling. Overall, we introduce 33 different loss functions and we organise them into an intuitive taxonomy. Each loss function is given a theoretical backing and we describe where it is best used. This survey aims to provide a reference of the most essential loss functions for both beginner and advanced machine learning practitioners.

The remarkable practical success of deep learning has revealed some major surprises from a theoretical perspective. In particular, simple gradient methods easily find near-optimal solutions to non-convex optimization problems, and despite giving a near-perfect fit to training data without any explicit effort to control model complexity, these methods exhibit excellent predictive accuracy. We conjecture that specific principles underlie these phenomena: that overparametrization allows gradient methods to find interpolating solutions, that these methods implicitly impose regularization, and that overparametrization leads to benign overfitting. We survey recent theoretical progress that provides examples illustrating these principles in simpler settings. We first review classical uniform convergence results and why they fall short of explaining aspects of the behavior of deep learning methods. We give examples of implicit regularization in simple settings, where gradient methods lead to minimal norm functions that perfectly fit the training data. Then we review prediction methods that exhibit benign overfitting, focusing on regression problems with quadratic loss. For these methods, we can decompose the prediction rule into a simple component that is useful for prediction and a spiky component that is useful for overfitting but, in a favorable setting, does not harm prediction accuracy. We focus specifically on the linear regime for neural networks, where the network can be approximated by a linear model. In this regime, we demonstrate the success of gradient flow, and we consider benign overfitting with two-layer networks, giving an exact asymptotic analysis that precisely demonstrates the impact of overparametrization. We conclude by highlighting the key challenges that arise in extending these insights to realistic deep learning settings.

Graph representation learning for hypergraphs can be used to extract patterns among higher-order interactions that are critically important in many real world problems. Current approaches designed for hypergraphs, however, are unable to handle different types of hypergraphs and are typically not generic for various learning tasks. Indeed, models that can predict variable-sized heterogeneous hyperedges have not been available. Here we develop a new self-attention based graph neural network called Hyper-SAGNN applicable to homogeneous and heterogeneous hypergraphs with variable hyperedge sizes. We perform extensive evaluations on multiple datasets, including four benchmark network datasets and two single-cell Hi-C datasets in genomics. We demonstrate that Hyper-SAGNN significantly outperforms the state-of-the-art methods on traditional tasks while also achieving great performance on a new task called outsider identification. Hyper-SAGNN will be useful for graph representation learning to uncover complex higher-order interactions in different applications.

Machine-learning models have demonstrated great success in learning complex patterns that enable them to make predictions about unobserved data. In addition to using models for prediction, the ability to interpret what a model has learned is receiving an increasing amount of attention. However, this increased focus has led to considerable confusion about the notion of interpretability. In particular, it is unclear how the wide array of proposed interpretation methods are related, and what common concepts can be used to evaluate them. We aim to address these concerns by defining interpretability in the context of machine learning and introducing the Predictive, Descriptive, Relevant (PDR) framework for discussing interpretations. The PDR framework provides three overarching desiderata for evaluation: predictive accuracy, descriptive accuracy and relevancy, with relevancy judged relative to a human audience. Moreover, to help manage the deluge of interpretation methods, we introduce a categorization of existing techniques into model-based and post-hoc categories, with sub-groups including sparsity, modularity and simulatability. To demonstrate how practitioners can use the PDR framework to evaluate and understand interpretations, we provide numerous real-world examples. These examples highlight the often under-appreciated role played by human audiences in discussions of interpretability. Finally, based on our framework, we discuss limitations of existing methods and directions for future work. We hope that this work will provide a common vocabulary that will make it easier for both practitioners and researchers to discuss and choose from the full range of interpretation methods.

Deep learning constitutes a recent, modern technique for image processing and data analysis, with promising results and large potential. As deep learning has been successfully applied in various domains, it has recently entered also the domain of agriculture. In this paper, we perform a survey of 40 research efforts that employ deep learning techniques, applied to various agricultural and food production challenges. We examine the particular agricultural problems under study, the specific models and frameworks employed, the sources, nature and pre-processing of data used, and the overall performance achieved according to the metrics used at each work under study. Moreover, we study comparisons of deep learning with other existing popular techniques, in respect to differences in classification or regression performance. Our findings indicate that deep learning provides high accuracy, outperforming existing commonly used image processing techniques.

北京阿比特科技有限公司