亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The goal of motion understanding is to establish a reliable mapping between motion and action semantics, while it is a challenging many-to-many problem. An abstract action semantic (i.e., walk forwards) could be conveyed by perceptually diverse motions (walk with arms up or swinging), while a motion could carry different semantics w.r.t. its context and intention. This makes an elegant mapping between them difficult. Previous attempts adopted direct-mapping paradigms with limited reliability. Also, current automatic metrics fail to provide reliable assessments of the consistency between motions and action semantics. We identify the source of these problems as the significant gap between the two modalities. To alleviate this gap, we propose Kinematic Phrases (KP) that take the objective kinematic facts of human motion with proper abstraction, interpretability, and generality characteristics. Based on KP as a mediator, we can unify a motion knowledge base and build a motion understanding system. Meanwhile, KP can be automatically converted from motions and to text descriptions with no subjective bias, inspiring Kinematic Prompt Generation (KPG) as a novel automatic motion generation benchmark. In extensive experiments, our approach shows superiority over other methods. Our code and data would be made publicly available at //foruck.github.io/KP.

相關內容

Counterfactual reasoning, a fundamental aspect of human cognition, involves contemplating alternatives to established facts or past events, significantly enhancing our abilities in planning and decision-making. In light of the advancements in current multi-modal large language models, we explore their effectiveness in counterfactual reasoning. To facilitate this investigation, we introduce a novel dataset, C-VQA, specifically designed to test the counterfactual reasoning capabilities of modern multi-modal large language models. This dataset is constructed by infusing original questions with counterfactual presuppositions, spanning various types such as numerical and boolean queries. It encompasses a mix of real and synthetic data, representing a wide range of difficulty levels. Our thorough evaluations of contemporary vision-language models using this dataset have revealed substantial performance drops, with some models showing up to a 40% decrease, highlighting a significant gap between current models and human-like vision reasoning capabilities. We hope our dataset will serve as a vital benchmark for evaluating the counterfactual reasoning capabilities of models. Code and dataset are publicly available at //bzhao.me/C-VQA/.

The longest induced (or chordless) cycle problem is a graph problem classified as NP-complete and involves the task of determining the largest possible subset of vertices within a graph in such a way that the induced subgraph forms a cycle. Within this paper, we present three integer linear programs specifically formulated to yield optimal solutions for this problem. The branch-and-cut algorithm has been used for two models. To demonstrate the computational efficiency of these methods, we utilize them on a range of real-world graphs as well as random graphs. Additionally, we conduct a comparative analysis against approaches previously proposed in the literature.

The convergence of deterministic policy gradient under the Hadamard parameterization is studied in the tabular setting and the linear convergence of the algorithm is established. To this end, we first show that the error decreases at an $O(\frac{1}{k})$ rate for all the iterations. Based on this result, we further show that the algorithm has a faster local linear convergence rate after $k_0$ iterations, where $k_0$ is a constant that only depends on the MDP problem and the initialization. To show the local linear convergence of the algorithm, we have indeed established the contraction of the sub-optimal probability $b_s^k$ (i.e., the probability of the output policy $\pi^k$ on non-optimal actions) when $k\ge k_0$.

The allure of aesthetic appeal in images captivates our senses, yet the underlying intricacies of aesthetic preferences remain elusive. In this study, we pioneer a novel perspective by utilizing machine learning models that focus on aesthetic attributes known to influence preferences. Through a data mining approach, our models process these attributes as inputs to predict the aesthetic scores of images. Moreover, to delve deeper and obtain interpretable explanations regarding the factors driving aesthetic preferences, we utilize the popular Explainable AI (XAI) technique known as SHapley Additive exPlanations (SHAP). Our methodology involves employing various machine learning models, including Random Forest, XGBoost, Support Vector Regression, and Multilayer Perceptron, to compare their performances in accurately predicting aesthetic scores, and consistently observing results in conjunction with SHAP. We conduct experiments on three image aesthetic benchmarks, providing insights into the roles of attributes and their interactions. Ultimately, our study aims to shed light on the complex nature of aesthetic preferences in images through machine learning and provides a deeper understanding of the attributes that influence aesthetic judgements.

Unsupervised learning of facial representations has gained increasing attention for face understanding ability without heavily relying on large-scale annotated datasets. However, it remains unsolved due to the coupling of facial identities, expressions, and external factors like pose and light. Prior methods primarily focus on 2D factors and pixel-level consistency, leading to incomplete disentangling and suboptimal performance in downstream tasks. In this paper, we propose LatentFace, a novel unsupervised disentangling framework for facial expression and identity representation. We suggest the disentangling problem should be performed in latent space and propose the solution using a 3D-aware latent diffusion model. First, we introduce a 3D-aware autoencoder to encode face images into 3D latent embeddings. Second, we propose a novel representation diffusion model (RDM) to disentangle 3D latent into facial identity and expression. Consequently, our method achieves state-of-the-art performance in facial expression recognition and face verification among unsupervised facial representation learning models. Codes are available at \url{//github.com/ryanhe312/LatentFace}.

We are interested in testing properties of distributions with systematically mislabeled samples. Our goal is to make decisions about unknown probability distributions, using a sample that has been collected by a confused collector, such as a machine-learning classifier that has not learned to distinguish all elements of the domain. The confused collector holds an unknown clustering of the domain and an input distribution $\mu$, and provides two oracles: a sample oracle which produces a sample from $\mu$ that has been labeled according to the clustering; and a label-query oracle which returns the label of a query point $x$ according to the clustering. Our first set of results shows that identity, uniformity, and equivalence of distributions can be tested efficiently, under the earth-mover distance, with remarkably weak conditions on the confused collector, even when the unknown clustering is adversarial. This requires defining a variant of the distribution testing task (inspired by the recent testable learning framework of Rubinfeld & Vasilyan), where the algorithm should test a joint property of the distribution and its clustering. As an example, we get efficient testers when the distribution tester is allowed to reject if it detects that the confused collector clustering is "far" from being a decision tree. The second set of results shows that we can sometimes do significantly better when the clustering is random instead of adversarial. For certain one-dimensional random clusterings, we show that uniformity can be tested under the TV distance using $\widetilde O\left(\frac{\sqrt n}{\rho^{3/2} \epsilon^2}\right)$ samples and zero queries, where $\rho \in (0,1]$ controls the "resolution" of the clustering. We improve this to $O\left(\frac{\sqrt n}{\rho \epsilon^2}\right)$ when queries are allowed.

The dominating NLP paradigm of training a strong neural predictor to perform one task on a specific dataset has led to state-of-the-art performance in a variety of applications (eg. sentiment classification, span-prediction based question answering or machine translation). However, it builds upon the assumption that the data distribution is stationary, ie. that the data is sampled from a fixed distribution both at training and test time. This way of training is inconsistent with how we as humans are able to learn from and operate within a constantly changing stream of information. Moreover, it is ill-adapted to real-world use cases where the data distribution is expected to shift over the course of a model's lifetime. The first goal of this thesis is to characterize the different forms this shift can take in the context of natural language processing, and propose benchmarks and evaluation metrics to measure its effect on current deep learning architectures. We then proceed to take steps to mitigate the effect of distributional shift on NLP models. To this end, we develop methods based on parametric reformulations of the distributionally robust optimization framework. Empirically, we demonstrate that these approaches yield more robust models as demonstrated on a selection of realistic problems. In the third and final part of this thesis, we explore ways of efficiently adapting existing models to new domains or tasks. Our contribution to this topic takes inspiration from information geometry to derive a new gradient update rule which alleviate catastrophic forgetting issues during adaptation.

Sampling methods (e.g., node-wise, layer-wise, or subgraph) has become an indispensable strategy to speed up training large-scale Graph Neural Networks (GNNs). However, existing sampling methods are mostly based on the graph structural information and ignore the dynamicity of optimization, which leads to high variance in estimating the stochastic gradients. The high variance issue can be very pronounced in extremely large graphs, where it results in slow convergence and poor generalization. In this paper, we theoretically analyze the variance of sampling methods and show that, due to the composite structure of empirical risk, the variance of any sampling method can be decomposed into \textit{embedding approximation variance} in the forward stage and \textit{stochastic gradient variance} in the backward stage that necessities mitigating both types of variance to obtain faster convergence rate. We propose a decoupled variance reduction strategy that employs (approximate) gradient information to adaptively sample nodes with minimal variance, and explicitly reduces the variance introduced by embedding approximation. We show theoretically and empirically that the proposed method, even with smaller mini-batch sizes, enjoys a faster convergence rate and entails a better generalization compared to the existing methods.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

While it is nearly effortless for humans to quickly assess the perceptual similarity between two images, the underlying processes are thought to be quite complex. Despite this, the most widely used perceptual metrics today, such as PSNR and SSIM, are simple, shallow functions, and fail to account for many nuances of human perception. Recently, the deep learning community has found that features of the VGG network trained on the ImageNet classification task has been remarkably useful as a training loss for image synthesis. But how perceptual are these so-called "perceptual losses"? What elements are critical for their success? To answer these questions, we introduce a new Full Reference Image Quality Assessment (FR-IQA) dataset of perceptual human judgments, orders of magnitude larger than previous datasets. We systematically evaluate deep features across different architectures and tasks and compare them with classic metrics. We find that deep features outperform all previous metrics by huge margins. More surprisingly, this result is not restricted to ImageNet-trained VGG features, but holds across different deep architectures and levels of supervision (supervised, self-supervised, or even unsupervised). Our results suggest that perceptual similarity is an emergent property shared across deep visual representations.

北京阿比特科技有限公司