亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Long-term operation of nuclear steam generators can result in the occurrence of clogging, a deposition phenomenon that may increase the risk of mechanical and vibration loadings on tube bundles and internal structures as well as potentially affecting their response to hypothetical accidental transients. To manage and prevent this issue, a robust maintenance program that requires a fine understanding of the underlying physics is essential. This study focuses on the utilization of a clogging simulation code developed by EDF R\&D. This numerical tool employs specific physical models to simulate the kinetics of clogging and generates time dependent clogging rate profiles for particular steam generators. However, certain parameters in this code are subject to uncertainties. To address these uncertainties, Monte Carlo simulations are conducted to assess the distribution of the clogging rate. Subsequently, polynomial chaos expansions are used in order to build a metamodel while time-dependent Sobol' indices are computed to understand the impact of the random input parameters throughout the whole operating time. Comparisons are made with a previous published study and additional Hilbert-Schmidt independence criterion sensitivity indices are computed. Key input-output dependencies are exhibited in the different chemical conditionings and new behavior patterns in high-pH regimes are uncovered by the sensitivity analysis. These findings contribute to a better understanding of the clogging phenomenon while opening future lines of modeling research and helping in robustifying maintenance planning.

相關內容

Selection bias in recommender system arises from the recommendation process of system filtering and the interactive process of user selection. Many previous studies have focused on addressing selection bias to achieve unbiased learning of the prediction model, but ignore the fact that potential outcomes for a given user-item pair may vary with the treatments assigned to other user-item pairs, named neighborhood effect. To fill the gap, this paper formally formulates the neighborhood effect as an interference problem from the perspective of causal inference and introduces a treatment representation to capture the neighborhood effect. On this basis, we propose a novel ideal loss that can be used to deal with selection bias in the presence of neighborhood effect. We further develop two new estimators for estimating the proposed ideal loss. We theoretically establish the connection between the proposed and previous debiasing methods ignoring the neighborhood effect, showing that the proposed methods can achieve unbiased learning when both selection bias and neighborhood effect are present, while the existing methods are biased. Extensive semi-synthetic and real-world experiments are conducted to demonstrate the effectiveness of the proposed methods.

The ever-increasing need for power consumption in electronic devices, coupled with the requirement for thinner size, calls for the development of efficient heat spreading components. Vapor chambers (VCs), because of their ability to effectively spread heat over a large area by two-phase heat transfer, seem ideal for such applications. However, creating thin and efficient vapor chambers that work over a wide range of power inputs is a persisting challenge. VCs that use wicks for circulating the phase changing media, suffer from capillary restrictions, dry-out, clogging, increase in size and weight, and can often be costly. Recent developments in wick-free wettability patterned vapor chambers replace traditional wicks with laser-fabricated wickless components. An experimental setup allows for fast testing and experimental evaluation of water-charged VCs with liquid-assisted cooling. The sealed chamber can maintain vacuum for long durations, and can be used for testing of very thin wick-free VCs. This work extends our previous study by decreasing overall thickness of the wick-free VC down to 3 mm and evaluates its performance. Furthermore, the impact of wettability patterns on VC performance is investigated, by carrying out experiments both in non-patterned and patterned VCs. Experiments are first carried out on a wick-free VC with no wettability patterns and comprising of an entirely superhydrophilic evaporator coupled with a hydrophobic condenser. Thereafter, wettability patterns that aid the rapid return of water to the heated site on the evaporator and improve condensation on the condenser of the vapor chamber are implemented. The thermal characteristics show that the patterned VCs outperform the non-patterned VCs under all scenarios. The patterned VCs exhibit low thermal resistance independent of fluid charging ratio withstanding higher power inputs without thermal dry-outs.

Intelligent reflecting surfaces (IRSs) are a promising low-cost solution for achieving high spectral and energy efficiency in future communication systems by enabling the customization of wireless propagation environments. Despite the plethora of research on resource allocation design for IRS-assisted multiuser wireless communication systems, the optimal design and the corresponding performance upper bound are still not fully understood. To bridge this gap in knowledge, in this paper, we investigate the optimal resource allocation design for IRS-assisted multiuser multiple-input single-output systems employing practical discrete IRS phase shifters. In particular, we jointly optimize the beamforming vector at the base station and the discrete IRS phase shifts to minimize the total transmit power for the cases of perfect and imperfect channel state information (CSI) knowledge. To this end, two novel algorithms based on the generalized Benders decomposition (GBD) method are developed to obtain the globally optimal solution for perfect and imperfect CSI, respectively. Moreover, to facilitate practical implementation, we propose two corresponding low-complexity suboptimal algorithms with guaranteed convergence by capitalizing on successive convex approximation (SCA). In particular, for imperfect CSI, we adopt a bounded error model to characterize the CSI uncertainty and propose a new transformation to convexify the robust quality-of-service constraints. Our numerical results confirm the optimality of the proposed GBD-based algorithms for the considered system for both perfect and imperfect CSI. Furthermore, we unveil that both proposed SCA-based algorithms can attain a locally optimal solution within a few iterations. Moreover, compared with the state-of-the-art solution based on alternating optimization, the proposed low-complexity SCA-based schemes achieve a significant performance gain.

Cellular structures found in nature exhibit remarkable properties such as high strength, high energy absorption, excellent thermal/acoustic insulation, and fluid transfusion. Many of these structures are Voronoi-like; therefore researchers have proposed Voronoi multi-scale designs for a wide variety of engineering applications. However, designing such structures can be computationally prohibitive due to the multi-scale nature of the underlying analysis and optimization. In this work, we propose the use of a neural network (NN) to carry out efficient topology optimization (TO) of multi-scale Voronoi structures. The NN is first trained using Voronoi parameters (cell site locations, thickness, orientation, and anisotropy) to predict the homogenized constitutive properties. This network is then integrated into a conventional TO framework to minimize structural compliance subject to a volume constraint. Special considerations are given for ensuring positive definiteness of the constitutive matrix and promoting macroscale connectivity. Several numerical examples are provided to showcase the proposed method.

We develop an algorithm to control an underactuated unmanned surface vehicle (USV) using kinodynamic motion planning with funnel control (KDF). KDF has two key components: motion planning used to generate trajectories with respect to kinodynamic constraints, and funnel control, also referred to as prescribed performance control, which enables trajectory tracking in the presence of uncertain dynamics and disturbances. We extend prescribed performance control to address the challenges posed by underactuation and control-input saturation present on the USV. The proposed scheme guarantees stability under user-defined prescribed performance functions where model parameters and exogenous disturbances are unknown. Furthermore, we present an optimization problem to obtain smooth, collision-free trajectories while respecting kinodynamic constraints. We deploy the algorithm on a USV and verify its efficiency in real-world open-water experiments.

Electricity generated from renewable energy sources has been established as an efficient remedy for both energy shortages and the environmental pollution stemming from conventional energy production methods. Solar and wind power are two of the most dominant renewable energy sources. The accurate forecasting of the energy generation of those sources facilitates their integration into electric grids, by minimizing the negative impact of uncertainty regarding their management and operation. This paper proposes a novel methodology for deterministic wind and solar energy generation forecasting for multiple generation sites, utilizing multi-location weather forecasts. The method employs a U-shaped Temporal Convolutional Auto-Encoder (UTCAE) architecture for temporal processing of weather-related and energy-related time-series across each site. The Multi-sized Kernels convolutional Spatio-Temporal Attention (MKST-Attention), inspired by the multi-head scaled-dot product attention mechanism, is also proposed aiming to efficiently transfer temporal patterns from weather data to energy data, without a priori knowledge of the locations of the power stations and the locations of provided weather data. The conducted experimental evaluation on a day-ahead solar and wind energy forecasting scenario on five datasets demonstrated that the proposed method achieves top results, outperforming all competitive time-series forecasting state-of-the-art methods.

Accurately measuring the cycle lifetime of commercial lithium-ion batteries is crucial for performance and technology development. We introduce a novel hybrid approach combining a physics-based equation with a self-attention model to predict the cycle lifetimes of commercial lithium iron phosphate graphite cells via early-cycle data. After fitting capacity loss curves to this physics-based equation, we then use a self-attention layer to reconstruct entire battery capacity loss curves. Our model exhibits comparable performances to existing models while predicting more information: the entire capacity loss curve instead of cycle life. This provides more robustness and interpretability: our model does not need to be retrained for a different notion of end-of-life and is backed by physical intuition.

Generative Adversarial Network (GAN) based vocoders are superior in both inference speed and synthesis quality when reconstructing an audible waveform from an acoustic representation. This study focuses on improving the discriminator for GAN-based vocoders. Most existing Time-Frequency Representation (TFR)-based discriminators are rooted in Short-Time Fourier Transform (STFT), which owns a constant Time-Frequency (TF) resolution, linearly scaled center frequencies, and a fixed decomposition basis, making it incompatible with signals like singing voices that require dynamic attention for different frequency bands and different time intervals. Motivated by that, we propose a Multi-Scale Sub-Band Constant-Q Transform CQT (MS-SB-CQT) discriminator and a Multi-Scale Temporal-Compressed Continuous Wavelet Transform CWT (MS-TC-CWT) discriminator. Both CQT and CWT have a dynamic TF resolution for different frequency bands. In contrast, CQT has a better modeling ability in pitch information, and CWT has a better modeling ability in short-time transients. Experiments conducted on both speech and singing voices confirm the effectiveness of our proposed discriminators. Moreover, the STFT, CQT, and CWT-based discriminators can be used jointly for better performance. The proposed discriminators can boost the synthesis quality of various state-of-the-art GAN-based vocoders, including HiFi-GAN, BigVGAN, and APNet.

Test smells can pose difficulties during testing activities, such as poor maintainability, non-deterministic behavior, and incomplete verification. Existing research has extensively addressed test smells in automated software tests but little attention has been given to smells in natural language tests. While some research has identified and catalogued such smells, there is a lack of systematic approaches for their removal. Consequently, there is also a lack of tools to automatically identify and remove natural language test smells. This paper introduces a catalog of transformations designed to remove seven natural language test smells and a companion tool implemented using Natural Language Processing (NLP) techniques. Our work aims to enhance the quality and reliability of natural language tests during software development. The research employs a two-fold empirical strategy to evaluate its contributions. First, a survey involving 15 software testing professionals assesses the acceptance and usefulness of the catalog's transformations. Second, an empirical study evaluates our tool to remove natural language test smells by analyzing a sample of real-practice tests from the Ubuntu OS. The results indicate that software testing professionals find the transformations valuable. Additionally, the automated tool demonstrates a good level of precision, as evidenced by a F-Measure rate of 83.70%

Face recognition technology has advanced significantly in recent years due largely to the availability of large and increasingly complex training datasets for use in deep learning models. These datasets, however, typically comprise images scraped from news sites or social media platforms and, therefore, have limited utility in more advanced security, forensics, and military applications. These applications require lower resolution, longer ranges, and elevated viewpoints. To meet these critical needs, we collected and curated the first and second subsets of a large multi-modal biometric dataset designed for use in the research and development (R&D) of biometric recognition technologies under extremely challenging conditions. Thus far, the dataset includes more than 350,000 still images and over 1,300 hours of video footage of approximately 1,000 subjects. To collect this data, we used Nikon DSLR cameras, a variety of commercial surveillance cameras, specialized long-rage R&D cameras, and Group 1 and Group 2 UAV platforms. The goal is to support the development of algorithms capable of accurately recognizing people at ranges up to 1,000 m and from high angles of elevation. These advances will include improvements to the state of the art in face recognition and will support new research in the area of whole-body recognition using methods based on gait and anthropometry. This paper describes methods used to collect and curate the dataset, and the dataset's characteristics at the current stage.

北京阿比特科技有限公司