亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Zero-Shot Object Counting (ZSOC) aims to count referred instances of arbitrary classes in a query image without human-annotated exemplars. To deal with ZSOC, preceding studies proposed a two-stage pipeline: discovering exemplars and counting. However, there remains a challenge of vulnerability to error propagation of the sequentially designed two-stage process. In this work, an one-stage baseline, Visual-Language Baseline (VLBase), exploring the implicit association of the semantic-patch embeddings of CLIP is proposed. Subsequently, the extension of VLBase to Visual-language Counter (VLCounter) is achieved by incorporating three modules devised to tailor VLBase for object counting. First, Semantic-conditioned Prompt Tuning (SPT) is introduced within the image encoder to acquire target-highlighted representations. Second, Learnable Affine Transformation (LAT) is employed to translate the semantic-patch similarity map to be appropriate for the counting task. Lastly, the layer-wisely encoded features are transferred to the decoder through Segment-aware Skip Connection (SaSC) to keep the generalization capability for unseen classes. Through extensive experiments on FSC147, CARPK, and PUCPR+, the benefits of the end-to-end framework, VLCounter, are demonstrated.

相關內容

iOS 8 提供的應用間和應用跟系統的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source:

Solely relying on test passing to evaluate Large Language Models (LLMs) for code synthesis may result in unfair assessment or promoting models with data leakage. As an alternative, we introduce CodeMind, a framework designed to gauge the code reasoning abilities of LLMs. CodeMind currently supports three code reasoning tasks: Independent Execution Reasoning (IER), Dependent Execution Reasoning (DER), and Specification Reasoning (SR). The first two evaluate models to predict the execution output of an arbitrary code or code the model could correctly synthesize. The third one evaluates the extent to which LLMs implement the specified expected behavior. Our extensive evaluation of nine LLMs across five benchmarks in two different programming languages using CodeMind shows that LLMs fairly understand control flow constructs and, in general, are capable of reasoning how inputs evolve to output, specifically for simple programs and the ones they can correctly synthesize. However, their performance drops for code with higher complexity, non-trivial logical and arithmetic operators, non-primitive types, and API calls. Furthermore, we observe that, while correlated, specification reasoning (essential for code synthesis) does not imply execution reasoning (essential for broader programming tasks such as testing and debugging): ranking LLMs based on test passing can be different compared to code reasoning.

Click-through rate (CTR) Prediction is a crucial task in personalized information retrievals, such as industrial recommender systems, online advertising, and web search. Most existing CTR Prediction models utilize explicit feature interactions to overcome the performance bottleneck of implicit feature interactions. Hence, deep CTR models based on parallel structures (e.g., DCN, FinalMLP, xDeepFM) have been proposed to obtain joint information from different semantic spaces. However, these parallel subcomponents lack effective supervisory signals, making it challenging to efficiently capture valuable multi-views feature interaction information in different semantic spaces. To address this issue, we propose a simple yet effective novel CTR model: Contrast-enhanced Through Network for CTR (CETN), so as to ensure the diversity and homogeneity of feature interaction information. Specifically, CETN employs product-based feature interactions and the augmentation (perturbation) concept from contrastive learning to segment different semantic spaces, each with distinct activation functions. This improves diversity in the feature interaction information captured by the model. Additionally, we introduce self-supervised signals and through connection within each semantic space to ensure the homogeneity of the captured feature interaction information. The experiments and research conducted on four real datasets demonstrate that our model consistently outperforms twenty baseline models in terms of AUC and Logloss.

Semi-Supervised Learning (SSL) aims to learn a model using a tiny labeled set and massive amounts of unlabeled data. To better exploit the unlabeled data the latest SSL methods use pseudo-labels predicted from a single discriminative classifier. However, the generated pseudo-labels are inevitably linked to inherent confirmation bias and noise which greatly affects the model performance. In this work we introduce a new framework for SSL named NorMatch. Firstly, we introduce a new uncertainty estimation scheme based on normalizing flows, as an auxiliary classifier, to enforce highly certain pseudo-labels yielding a boost of the discriminative classifiers. Secondly, we introduce a threshold-free sample weighting strategy to exploit better both high and low confidence pseudo-labels. Furthermore, we utilize normalizing flows to model, in an unsupervised fashion, the distribution of unlabeled data. This modelling assumption can further improve the performance of generative classifiers via unlabeled data, and thus, implicitly contributing to training a better discriminative classifier. We demonstrate, through numerical and visual results, that NorMatch achieves state-of-the-art performance on several datasets.

Low-Rank Adaptation (LoRA) provides an effective yet efficient solution for fine-tuning large language models (LLM). The modular and plug-and-play nature of LoRA enables the integration of diverse domain-specific LoRAs to enhance the capabilities of LLMs. Previous research on exploiting multiple LoRAs either focuses on specific isolated downstream tasks or fixes the selection of LoRAs during training. However, in real-world scenarios, LLMs receive diverse prompts covering different tasks, and the pool of candidate LoRAs is often dynamically updated. To bridge this gap, we propose LoraRetriever, a retrieve-then-compose framework that adaptively retrieves and composes multiple LoRAs according to the input prompts. LoraRetriever contains three main components: firstly, identifying and retrieving LoRAs relevant to the given input; secondly, formulating strategies for effectively integrating the retrieved LoRAs; and thirdly, developing efficient batch inference to accommodate heterogeneous requests. Experimental results indicate that LoraRetriever consistently outperforms the baselines, highlighting its practical effectiveness and versatility.

Grounded Multimodal Named Entity Recognition (GMNER) is a nascent multimodal task that aims to identify named entities, entity types and their corresponding visual regions. GMNER task exhibits two challenging properties: 1) The weak correlation between image-text pairs in social media results in a significant portion of named entities being ungroundable. 2) There exists a distinction between coarse-grained referring expressions commonly used in similar tasks (e.g., phrase localization, referring expression comprehension) and fine-grained named entities. In this paper, we propose RiVEG, a unified framework that reformulates GMNER into a joint MNER-VE-VG task by leveraging large language models (LLMs) as a connecting bridge. This reformulation brings two benefits: 1) It maintains the optimal MNER performance and eliminates the need for employing object detection methods to pre-extract regional features, thereby naturally addressing two major limitations of existing GMNER methods. 2) The introduction of entity expansion expression and Visual Entailment (VE) Module unifies Visual Grounding (VG) and Entity Grounding (EG). It enables RiVEG to effortlessly inherit the Visual Entailment and Visual Grounding capabilities of any current or prospective multimodal pretraining models. Extensive experiments demonstrate that RiVEG outperforms state-of-the-art methods on the existing GMNER dataset and achieves absolute leads of 10.65%, 6.21%, and 8.83% in all three subtasks.

Advancements in deep learning-based 3D object detection necessitate the availability of large-scale datasets. However, this requirement introduces the challenge of manual annotation, which is often both burdensome and time-consuming. To tackle this issue, the literature has seen the emergence of several weakly supervised frameworks for 3D object detection which can automatically generate pseudo labels for unlabeled data. Nevertheless, these generated pseudo labels contain noise and are not as accurate as those labeled by humans. In this paper, we present the first approach that addresses the inherent ambiguities present in pseudo labels by introducing an Evidential Deep Learning (EDL) based uncertainty estimation framework. Specifically, we propose MEDL-U, an EDL framework based on MTrans, which not only generates pseudo labels but also quantifies the associated uncertainties. However, applying EDL to 3D object detection presents three primary challenges: (1) relatively lower pseudolabel quality in comparison to other autolabelers; (2) excessively high evidential uncertainty estimates; and (3) lack of clear interpretability and effective utilization of uncertainties for downstream tasks. We tackle these issues through the introduction of an uncertainty-aware IoU-based loss, an evidence-aware multi-task loss function, and the implementation of a post-processing stage for uncertainty refinement. Our experimental results demonstrate that probabilistic detectors trained using the outputs of MEDL-U surpass deterministic detectors trained using outputs from previous 3D annotators on the KITTI val set for all difficulty levels. Moreover, MEDL-U achieves state-of-the-art results on the KITTI official test set compared to existing 3D automatic annotators.

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.

Retrieving object instances among cluttered scenes efficiently requires compact yet comprehensive regional image representations. Intuitively, object semantics can help build the index that focuses on the most relevant regions. However, due to the lack of bounding-box datasets for objects of interest among retrieval benchmarks, most recent work on regional representations has focused on either uniform or class-agnostic region selection. In this paper, we first fill the void by providing a new dataset of landmark bounding boxes, based on the Google Landmarks dataset, that includes $94k$ images with manually curated boxes from $15k$ unique landmarks. Then, we demonstrate how a trained landmark detector, using our new dataset, can be leveraged to index image regions and improve retrieval accuracy while being much more efficient than existing regional methods. In addition, we further introduce a novel regional aggregated selective match kernel (R-ASMK) to effectively combine information from detected regions into an improved holistic image representation. R-ASMK boosts image retrieval accuracy substantially at no additional memory cost, while even outperforming systems that index image regions independently. Our complete image retrieval system improves upon the previous state-of-the-art by significant margins on the Revisited Oxford and Paris datasets. Code and data will be released.

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

北京阿比特科技有限公司