亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A miniature robotic blimp, as one type of lighter-than-air aerial vehicle, has attracted increasing attention in the science and engineering field for its long flight duration and safe aerial locomotion. While a variety of miniature robotic blimps have been developed over the past decade, most of them utilize the buoyant lift and neglect the aerodynamic lift in their design, thus leading to a mediocre aerodynamic performance. This letter proposes a new design of miniature robotic blimp that combines desirable features of both a robotic blimp and a fixed-wing glider, named the Robotic Gliding Blimp, or RGBlimp. This robot, equipped with an envelope filled with helium and a pair of wings, uses an internal moving mass and a pair of propellers for its locomotion control. This letter presents the design, dynamic modeling, prototyping, and system identification of the RGBlimp. To the best of the authors' knowledge, this is the first effort to systematically design and develop such a miniature robotic blimp with hybrid lifts and moving mass control. Experimental results are presented to validate the design and the dynamic model of the RGBlimp. Analysis of the RGBlimp aerodynamics is conducted which confirms the performance improvement of the proposed RGBlimp in aerodynamic efficiency and flight stability.

相關內容

機(ji)(ji)(ji)器(qi)人(ren)(ren)(ren)(英(ying)語:Robot)包括一切模(mo)擬人(ren)(ren)(ren)類(lei)行為或思想與模(mo)擬其(qi)他生物(wu)的(de)機(ji)(ji)(ji)械(如(ru)機(ji)(ji)(ji)器(qi)狗(gou),機(ji)(ji)(ji)器(qi)貓等)。狹義上對機(ji)(ji)(ji)器(qi)人(ren)(ren)(ren)的(de)定義還有很多分類(lei)法(fa)及爭議,有些電(dian)腦程序(xu)甚至(zhi)也被稱(cheng)為機(ji)(ji)(ji)器(qi)人(ren)(ren)(ren)。在當代工業(ye)中,機(ji)(ji)(ji)器(qi)人(ren)(ren)(ren)指(zhi)能(neng)自動運(yun)行任務(wu)的(de)人(ren)(ren)(ren)造機(ji)(ji)(ji)器(qi)設備,用(yong)以取代或協助(zhu)人(ren)(ren)(ren)類(lei)工作,一般會是機(ji)(ji)(ji)電(dian)設備,由計算機(ji)(ji)(ji)程序(xu)或是電(dian)子電(dian)路控制。

知識薈萃

精品入門和進階教(jiao)程、論文和代碼整理等(deng)

更多

查(cha)看相關VIP內容、論文、資訊等

Neuromodulation techniques have emerged as promising approaches for treating a wide range of neurological disorders, precisely delivering electrical stimulation to modulate abnormal neuronal activity. While leveraging the unique capabilities of artificial intelligence (AI) holds immense potential for responsive neurostimulation, it appears as an extremely challenging proposition where real-time (low-latency) processing, low power consumption, and heat constraints are limiting factors. The use of sophisticated AI-driven models for personalized neurostimulation depends on back-telemetry of data to external systems (e.g. cloud-based medical mesosystems and ecosystems). While this can be a solution, integrating continuous learning within implantable neuromodulation devices for several applications, such as seizure prediction in epilepsy, is an open question. We believe neuromorphic architectures hold an outstanding potential to open new avenues for sophisticated on-chip analysis of neural signals and AI-driven personalized treatments. With more than three orders of magnitude reduction in the total data required for data processing and feature extraction, the high power- and memory-efficiency of neuromorphic computing to hardware-firmware co-design can be considered as the solution-in-the-making to resource-constraint implantable neuromodulation systems. This perspective introduces the concept of Neuromorphic Neuromodulation, a new breed of closed-loop responsive feedback system. It highlights its potential to revolutionize implantable brain-machine microsystems for patient-specific treatment

In multi-task learning (MTL), gradient balancing has recently attracted more research interest than loss balancing since it often leads to better performance. However, loss balancing is much more efficient than gradient balancing, and thus it is still worth further exploration in MTL. Note that prior studies typically ignore that there exist varying improvable gaps across multiple tasks, where the improvable gap per task is defined as the distance between the current training progress and desired final training progress. Therefore, after loss balancing, the performance imbalance still arises in many cases. In this paper, following the loss balancing framework, we propose two novel improvable gap balancing (IGB) algorithms for MTL: one takes a simple heuristic, and the other (for the first time) deploys deep reinforcement learning for MTL. Particularly, instead of directly balancing the losses in MTL, both algorithms choose to dynamically assign task weights for improvable gap balancing. Moreover, we combine IGB and gradient balancing to show the complementarity between the two types of algorithms. Extensive experiments on two benchmark datasets demonstrate that our IGB algorithms lead to the best results in MTL via loss balancing and achieve further improvements when combined with gradient balancing. Code is available at //github.com/YanqiDai/IGB4MTL.

Reconstructing the shape and spatially varying surface appearances of a physical-world object as well as its surrounding illumination based on 2D images (e.g., photographs) of the object has been a long-standing problem in computer vision and graphics. In this paper, we introduce a robust object reconstruction pipeline combining neural based object reconstruction and physics-based inverse rendering (PBIR). Specifically, our pipeline firstly leverages a neural stage to produce high-quality but potentially imperfect predictions of object shape, reflectance, and illumination. Then, in the later stage, initialized by the neural predictions, we perform PBIR to refine the initial results and obtain the final high-quality reconstruction. Experimental results demonstrate our pipeline significantly outperforms existing reconstruction methods quality-wise and performance-wise.

Advanced image tampering techniques are increasingly challenging the trustworthiness of multimedia, leading to the development of Image Manipulation Localization (IML). But what makes a good IML model? The answer lies in the way to capture artifacts. Exploiting artifacts requires the model to extract non-semantic discrepancies between the manipulated and authentic regions, which needs to compare differences between these two areas explicitly. With the self-attention mechanism, naturally, the Transformer is the best candidate. Besides, artifacts are sensitive to image resolution, amplified under multi-scale features, and massive at the manipulation border. Therefore, we formulate the answer to the former question as building a ViT with high-resolution capacity, multi-scale feature extraction capability, and manipulation edge supervision. We term this simple but effective ViT paradigm as the IML-ViT, which has great potential to become a new benchmark for IML. Extensive experiments on five benchmark datasets verified our model outperforms the state-of-the-art manipulation localization methods. Code and models are available at \url{//github.com/SunnyHaze/IML-ViT}

The growing adoption of the Internet of Things (IoT) has brought a significant increase in attacks targeting those devices. Machine learning (ML) methods have shown promising results for intrusion detection; however, the scarcity of IoT datasets remains a limiting factor in developing ML-based security systems for IoT scenarios. Static datasets get outdated due to evolving IoT architectures and threat landscape; meanwhile, the testbeds used to generate them are rarely published. This paper presents the Gotham testbed, a reproducible and flexible security testbed extendable to accommodate new emulated devices, services or attackers. Gotham is used to build an IoT scenario composed of 100 emulated devices communicating via MQTT, CoAP and RTSP protocols, among others, in a topology composed of 30 switches and 10 routers. The scenario presents three threat actors, including the entire Mirai botnet lifecycle and additional red-teaming tools performing DoS, scanning, and attacks targeting IoT protocols. The testbed has many purposes, including a cyber range, testing security solutions, and capturing network and application data to generate datasets. We hope that researchers can leverage and adapt Gotham to include other devices, state-of-the-art attacks and topologies to share scenarios and datasets that reflect the current IoT settings and threat landscape.

The Weighted Path Order of Yamada is a powerful technique for proving termination. It is also supported by CeTA, a certifier for checking untrusted termination proofs. To be more precise, CeTA contains a verified function that computes for two terms whether one of them is larger than the other for a given WPO, i.e., where all parameters of the WPO have been fixed. The problem of this verified function is its exponential runtime in the worst case. Therefore, in this work we develop a polynomial time implementation of WPO that is based on memoization. It also improves upon an earlier verified implementation of the Recursive Path Order: the RPO-implementation uses full terms as keys for the memory, a design which simplified the soundness proofs, but has some runtime overhead. In this work, keys are just numbers, so that the lookup in the memory is faster. Although trivial on paper, this change introduces some challenges for the verification task.

While imitation learning methods have seen a resurgent interest for robotic manipulation, the well-known problem of compounding errors continues to afflict behavioral cloning (BC). Waypoints can help address this problem by reducing the horizon of the learning problem for BC, and thus, the errors compounded over time. However, waypoint labeling is underspecified, and requires additional human supervision. Can we generate waypoints automatically without any additional human supervision? Our key insight is that if a trajectory segment can be approximated by linear motion, the endpoints can be used as waypoints. We propose Automatic Waypoint Extraction (AWE) for imitation learning, a preprocessing module to decompose a demonstration into a minimal set of waypoints which when interpolated linearly can approximate the trajectory up to a specified error threshold. AWE can be combined with any BC algorithm, and we find that AWE can increase the success rate of state-of-the-art algorithms by up to 25% in simulation and by 4-28% on real-world bimanual manipulation tasks, reducing the decision making horizon by up to a factor of 10. Videos and code are available at //lucys0.github.io/awe/

Algorithms for state estimation of humanoid robots usually assume that the feet remain flat and in a constant position while in contact with the ground. However, this hypothesis is easily violated while walking, especially for human-like gaits with heel-toe motion. This reduces the time during which the contact assumption can be used, or requires higher variances to account for errors. In this paper, we present a novel state estimator based on the extended Kalman filter that can properly handle any contact configuration. We consider multiple inertial measurement units (IMUs) distributed throughout the robot's structure, including on both feet, which are used to track multiple bodies of the robot. This multi-IMU instrumentation setup also has the advantage of allowing the deformations in the robot's structure to be estimated, improving the kinematic model used in the filter. The proposed approach is validated experimentally on the exoskeleton Atalante and is shown to present low drift, performing better than similar single-IMU filters. The obtained trajectory estimates are accurate enough to construct elevation maps that have little distortion with respect to the ground truth.

Penrose tilings are the most famous aperiodic tilings, and they have been studied extensively. In particular, patterns composed with hexagons ($H$), boats ($B$) and stars ($S$) were soon exhibited and many physicists published on what they later called $HBS$ tilings, but no article or book combines all we know about them. This work is done here, before introducing new decorations and properties including explicit substitutions. For the latter, the star comes in three versions so we have 5 prototiles in what we call the Star tileset. Yet this set yields exactly the strict $HBS$ tilings formed using 3 tiles decorated with either the usual decorations (arrows) or Ammann bar markings for instance. Another new tileset called Gemstones is also presented, derived from the Star tileset.

The previous work for event extraction has mainly focused on the predictions for event triggers and argument roles, treating entity mentions as being provided by human annotators. This is unrealistic as entity mentions are usually predicted by some existing toolkits whose errors might be propagated to the event trigger and argument role recognition. Few of the recent work has addressed this problem by jointly predicting entity mentions, event triggers and arguments. However, such work is limited to using discrete engineering features to represent contextual information for the individual tasks and their interactions. In this work, we propose a novel model to jointly perform predictions for entity mentions, event triggers and arguments based on the shared hidden representations from deep learning. The experiments demonstrate the benefits of the proposed method, leading to the state-of-the-art performance for event extraction.

北京阿比特科技有限公司