Decision trees are widely used for their low computational cost, good predictive performance, and ability to assess the importance of features. Though often used in practice for feature selection, the theoretical guarantees of these methods are not well understood. We here obtain a tight finite sample bound for the feature selection problem in linear regression using single-depth decision trees. We examine the statistical properties of these "decision stumps" for the recovery of the $s$ active features from $p$ total features, where $s \ll p$. Our analysis provides tight sample performance guarantees on high-dimensional sparse systems which align with the finite sample bound of $O(s \log p)$ as obtained by Lasso, improving upon previous bounds for both the median and optimal splitting criteria. Our results extend to the non-linear regime as well as arbitrary sub-Gaussian distributions, demonstrating that tree based methods attain strong feature selection properties under a wide variety of settings and further shedding light on the success of these methods in practice. As a byproduct of our analysis, we show that we can provably guarantee recovery even when the number of active features $s$ is unknown. We further validate our theoretical results and proof methodology using computational experiments.
Information design in an incomplete information game includes a designer with the goal of influencing players' actions through signals generated from a designed probability distribution so that its objective function is optimized. We consider a setting in which the designer has partial knowledge on agents' utilities. We address the uncertainty about players' preferences by formulating a robust information design problem against worst case payoffs. If the players have quadratic payoffs that depend on the players' actions and an unknown payoff-relevant state, and signals on the state that follow a Gaussian distribution conditional on the state realization, then the information design problem under quadratic design objectives is a semidefinite program (SDP). Specifically, we consider ellipsoid perturbations over payoff coefficients in linear-quadratic-Gaussian (LQG) games. We show that this leads to a tractable robust SDP formulation. Numerical studies are carried out to identify the relation between the perturbation levels and the optimal information structures.
Data valuation is a powerful framework for providing statistical insights into which data are beneficial or detrimental to model training. Many Shapley-based data valuation methods have shown promising results in various downstream tasks, however, they are well known to be computationally challenging as it requires training a large number of models. As a result, it has been recognized as infeasible to apply to large datasets. To address this issue, we propose Data-OOB, a new data valuation method for a bagging model that utilizes the out-of-bag estimate. The proposed method is computationally efficient and can scale to millions of data by reusing trained weak learners. Specifically, Data-OOB takes less than 2.25 hours on a single CPU processor when there are $10^6$ samples to evaluate and the input dimension is 100. Furthermore, Data-OOB has solid theoretical interpretations in that it identifies the same important data point as the infinitesimal jackknife influence function when two different points are compared. We conduct comprehensive experiments using 12 classification datasets, each with thousands of sample sizes. We demonstrate that the proposed method significantly outperforms existing state-of-the-art data valuation methods in identifying mislabeled data and finding a set of helpful (or harmful) data points, highlighting the potential for applying data values in real-world applications.
The Naive Bayesian classifier is a popular classification method employing the Bayesian paradigm. The concept of having conditional dependence among input variables sounds good in theory but can lead to a majority vote style behaviour. Achieving conditional independence is often difficult, and they introduce decision biases in the estimates. In Naive Bayes, certain features are called independent features as they have no conditional correlation or dependency when predicting a classification. In this paper, we focus on the optimal partition of features by proposing a novel technique called the Comonotone-Independence Classifier (CIBer) which is able to overcome the challenges posed by the Naive Bayes method. For different datasets, we clearly demonstrate the efficacy of our technique, where we achieve lower error rates and higher or equivalent accuracy compared to models such as Random Forests and XGBoost.
We consider a novel dynamic pricing and learning setting where in addition to setting prices of products in sequential rounds, the seller also ex-ante commits to 'advertising schemes'. That is, in the beginning of each round the seller can decide what kind of signal they will provide to the buyer about the product's quality upon realization. Using the popular Bayesian persuasion framework to model the effect of these signals on the buyers' valuation and purchase responses, we formulate the problem of finding an optimal design of the advertising scheme along with a pricing scheme that maximizes the seller's expected revenue. Without any apriori knowledge of the buyers' demand function, our goal is to design an online algorithm that can use past purchase responses to adaptively learn the optimal pricing and advertising strategy. We study the regret of the algorithm when compared to the optimal clairvoyant price and advertising scheme. Our main result is a computationally efficient online algorithm that achieves an $O(T^{2/3}(m\log T)^{1/3})$ regret bound when the valuation function is linear in the product quality. Here $m$ is the cardinality of the discrete product quality domain and $T$ is the time horizon. This result requires some natural monotonicity and Lipschitz assumptions on the valuation function, but no Lipschitz or smoothness assumption on the buyers' demand function. For constant $m$, our result matches the regret lower bound for dynamic pricing within logarithmic factors, which is a special case of our problem. We also obtain several improved results for the widely considered special case of additive valuations, including an $\tilde{O}(T^{2/3})$ regret bound independent of $m$ when $m\le T^{1/3}$.
Recovering the latent factors of variation of high dimensional data has so far focused on simple synthetic settings. Mostly building on unsupervised and weakly-supervised objectives, prior work missed out on the positive implications for representation learning on real world data. In this work, we propose to leverage knowledge extracted from a diversified set of supervised tasks to learn a common disentangled representation. Assuming each supervised task only depends on an unknown subset of the factors of variation, we disentangle the feature space of a supervised multi-task model, with features activating sparsely across different tasks and information being shared as appropriate. Importantly, we never directly observe the factors of variations but establish that access to multiple tasks is sufficient for identifiability under sufficiency and minimality assumptions. We validate our approach on six real world distribution shift benchmarks, and different data modalities (images, text), demonstrating how disentangled representations can be transferred to real settings.
We study the classical problem of predicting an outcome variable, $Y$, using a linear combination of a $d$-dimensional covariate vector, $\mathbf{X}$. We are interested in linear predictors whose coefficients solve: % \begin{align*} \inf_{\boldsymbol{\beta} \in \mathbb{R}^d} \left( \mathbb{E}_{\mathbb{P}_n} \left[ \left(Y-\mathbf{X}^{\top}\beta \right)^r \right] \right)^{1/r} +\delta \, \rho\left(\boldsymbol{\beta}\right), \end{align*} where $\delta>0$ is a regularization parameter, $\rho:\mathbb{R}^d\to \mathbb{R}_+$ is a convex penalty function, $\mathbb{P}_n$ is the empirical distribution of the data, and $r\geq 1$. We present three sets of new results. First, we provide conditions under which linear predictors based on these estimators % solve a \emph{distributionally robust optimization} problem: they minimize the worst-case prediction error over distributions that are close to each other in a type of \emph{max-sliced Wasserstein metric}. Second, we provide a detailed finite-sample and asymptotic analysis of the statistical properties of the balls of distributions over which the worst-case prediction error is analyzed. Third, we use the distributionally robust optimality and our statistical analysis to present i) an oracle recommendation for the choice of regularization parameter, $\delta$, that guarantees good out-of-sample prediction error; and ii) a test-statistic to rank the out-of-sample performance of two different linear estimators. None of our results rely on sparsity assumptions about the true data generating process; thus, they broaden the scope of use of the square-root lasso and related estimators in prediction problems.
In this paper we face the problem of representation of functional data with the tools of algebraic topology. We represent functions by means of merge trees and this representation is compared with that offered by persistence diagrams. We show that these two structures, although not equivalent, are both invariant under homeomorphic re-parametrizations of the functions they represent, thus allowing for a statistical analysis which is indifferent to functional misalignment. We employ a novel metric for merge trees and we prove some theoretical results related to its specific implementation when merge trees represent functions. To showcase the good properties of our topological approach to functional data analysis, we test it on the Aneurisk65 dataset replicating, from our different perspective, the supervised classification analysis which contributed to make this dataset a benchmark for methods dealing with misaligned functional data.
Network structures underlie the dynamics of many complex phenomena, from gene regulation and foodwebs to power grids and social media. Yet, as they often cannot be observed directly, their connectivities must be inferred from observations of their emergent dynamics. In this work we present a powerful computational method to infer large network adjacency matrices from time series data using a neural network, in order to provide uncertainty quantification on the prediction in a manner that reflects both the non-convexity of the inference problem as well as the noise on the data. This is useful since network inference problems are typically underdetermined, and a feature that has hitherto been lacking from such methods. We demonstrate our method's capabilities by inferring line failure locations in the British power grid from its response to a power cut. Since the problem is underdetermined, many classical statistical tools (e.g. regression) will not be straightforwardly applicable. Our method, in contrast, provides probability densities on each edge, allowing the use of hypothesis testing to make meaningful probabilistic statements about the location of the power cut. We also demonstrate our method's ability to learn an entire cost matrix for a non-linear model of economic activity in Greater London. Our method outperforms OLS regression on noisy data in terms of both speed and prediction accuracy, and scales as $N^2$ where OLS is cubic. Not having been specifically engineered for network inference, our method represents a general parameter estimation scheme that is applicable to any parameter dimension.
We present convergence estimates of two types of greedy algorithms in terms of the metric entropy of underlying compact sets. In the first part, we measure the error of a standard greedy reduced basis method for parametric PDEs by the metric entropy of the solution manifold in Banach spaces. This contrasts with the classical analysis based on the Kolmogorov n-widths and enables us to obtain direct comparisons between the greedy algorithm error and the entropy numbers, where the multiplicative constants are explicit and simple. The entropy-based convergence estimate is sharp and improves upon the classical width-based analysis of reduced basis methods for elliptic model problems. In the second part, we derive a novel and simple convergence analysis of the classical orthogonal greedy algorithm for nonlinear dictionary approximation using the metric entropy of the symmetric convex hull of the dictionary. This also improves upon existing results by giving a direct comparison between the algorithm error and the metric entropy.