亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

High Definition (HD) maps are necessary for many applications of automated driving (AD), but their manual creation and maintenance is very costly. Vehicle fleet data from series production vehicles can be used to automatically generate HD maps, but the data is often incomplete and noisy. We propose a system for the generation of HD maps from vehicle fleet data, which is tolerant to missing or misclassified detections and can handle drives with multiple routes, generating a single complete map, model-free and without prior reference lines. Using randomly selected drives as pivot drives, a step-wise lateral sampling of detections is performed. These sampled points are then clustered and aligned using Expectation Maximization (EM), estimating a lateral offset for each drive to compensate localization errors. The clustered points are replaced with the maxima of their probability density function (PDF) and connected to form polylines using a modified rectangular linear assignment algorithm. The data from vehicles on varying routes is then fused into a hierarchical singular map graph. The proposed approach achieves an average accuracy below 0.5 meters compared to a hand annotated ground truth map, as well as correctly resolving lane splits and merges, proving the feasibility of the use of vehicle fleet data for the generation of highway HD maps.

相關內容

Cloud detection is a pivotal satellite image pre-processing step that can be performed both on the ground and on board a satellite to tag useful images. In the latter case, it can reduce the amount of data to downlink by pruning the cloudy areas, or to make a satellite more autonomous through data-driven acquisition re-scheduling. We approach this task with nnU-Nets, a self-reconfigurable framework able to perform meta-learning of a segmentation network over various datasets. Unfortunately, such models are commonly memory-inefficient due to their (very) large architectures. To benefit from them in on-board processing, we compress nnU-Nets with knowledge distillation into much smaller and compact U-Nets. Our experiments, performed over Sentinel-2 and Landsat-8 images revealed that nnU-Nets deliver state-of-the-art performance without any manual design. Our approach was ranked within the top 7% best solutions (across 847 teams) in the On Cloud N: Cloud Cover Detection Challenge, where we reached the Jaccard index of 0.882 over more than 10k unseen Sentinel-2 images (the winners obtained 0.897, the baseline U-Net with the ResNet-34 backbone: 0.817, and the classic Sentinel-2 image thresholding: 0.652). Finally, we showed that knowledge distillation enables to elaborate dramatically smaller (almost 280x) U-Nets when compared to nnU-Nets while still maintaining their segmentation capabilities.

We consider robot learning in the context of shared autonomy, where control of the system can switch between a human teleoperator and autonomous control. In this setting we address reinforcement learning, and learning from demonstration, where there is a cost associated with human time. This cost represents the human time required to teleoperate the robot, or recover the robot from failures. For each episode, the agent must choose between requesting human teleoperation, or using one of its autonomous controllers. In our approach, we learn to predict the success probability for each controller, given the initial state of an episode. This is used in a contextual multi-armed bandit algorithm to choose the controller for the episode. A controller is learnt online from demonstrations and reinforcement learning so that autonomous performance improves, and the system becomes less reliant on the teleoperator with more experience. We show that our approach to controller selection reduces the human cost to perform two simulated tasks and a single real-world task.

The success of deep learning requires high-quality annotated and massive data. However, the size and the quality of a dataset are usually a trade-off in practice, as data collection and cleaning are expensive and time-consuming. In real-world applications, especially those using crowdsourcing datasets, it is important to exclude noisy labels. To address this, this paper proposes an automatic noisy label detection (NLD) technique with inconsistency ranking for high-quality data. We apply this technique to the automatic speaker verification (ASV) task as a proof of concept. We investigate both inter-class and intra-class inconsistency ranking and compare several metric learning loss functions under different noise settings. Experimental results confirm that the proposed solution could increase both the efficient and effective cleaning of large-scale speaker recognition datasets.

Voltage fluctuations are common disturbances in power grids. Initially, it is necessary to selectively identify individual sources of voltage fluctuations to take actions to minimize the effects of voltage fluctuations. Selective identification of disturbing loads is possible by using a signal chain consisting of demodulation, decomposition, and assessment of the propagation of component signals. The accuracy of such an approach is closely related to the applied decomposition method. The paper presents a new method for decomposition by approximation with pulse waves. The proposed method allows for an correct identification of selected parameters, that is, the frequency of changes in the operating state of individual sources of voltage fluctuations and the amplitude of voltage changes caused by them. The article presents results from numerical simulation studies and laboratory experimental studies, based on which the estimation errors of the indicated parameters were determined by the proposed decomposition method and other empirical decomposition methods available in the literature. The real states that occur in power grids were recreated in the research. The metrological interpretation of the results obtained from the numerical simulation and experimental research is discussed.

Depth perception is considered an invaluable source of information in the context of 3D mapping and various robotics applications. However, point cloud maps acquired using consumer-level light detection and ranging sensors (lidars) still suffer from bias related to local surface properties such as measuring beam-to-surface incidence angle, distance, texture, reflectance, or illumination conditions. This fact has recently motivated researchers to exploit traditional filters, as well as the deep learning paradigm, in order to suppress the aforementioned depth sensors error while preserving geometric and map consistency details. Despite the effort, depth correction of lidar measurements is still an open challenge mainly due to the lack of clean 3D data that could be used as ground truth. In this paper, we introduce two novel point cloud map consistency losses, which facilitate self-supervised learning on real data of lidar depth correction models. Specifically, the models exploit multiple point cloud measurements of the same scene from different view-points in order to learn to reduce the bias based on the constructed map consistency signal. Complementary to the removal of the bias from the measurements, we demonstrate that the depth correction models help to reduce localization drift. Additionally, we release a data set that contains point cloud data captured in an indoor corridor environment with precise localization and ground truth mapping information.

In this work, we present a novel target-based lidar-camera extrinsic calibration methodology that can be used for non-overlapping field of view (FOV) sensors. Contrary to previous work, our methodology overcomes the non-overlapping FOV challenge using a motion capture system (MCS) instead of traditional simultaneous localization and mapping approaches. Due to the high relative precision of the MCS, our methodology can achieve both the high accuracy and repeatable calibrations of traditional target-based methods, regardless of the amount of overlap in the field of view of the sensors. We show using simulation that we can accurately recover extrinsic calibrations for a range of perturbations to the true calibration that would be expected in real circumstances. We also validate that high accuracy calibrations can be achieved on experimental data. Furthermore, We implement the described approach in an extensible way that allows any camera model, target shape, or feature extraction methodology to be used within our framework. We validate this implementation on two target shapes: an easy to construct cylinder target and a diamond target with a checkerboard. The cylinder target shape results show that our methodology can be used for degenerate target shapes where target poses cannot be fully constrained from a single observation, and distinct repeatable features need not be detected on the target.

Node classification on graphs is a significant task with a wide range of applications, including social analysis and anomaly detection. Even though graph neural networks (GNNs) have produced promising results on this task, current techniques often presume that label information of nodes is accurate, which may not be the case in real-world applications. To tackle this issue, we investigate the problem of learning on graphs with label noise and develop a novel approach dubbed Consistent Graph Neural Network (CGNN) to solve it. Specifically, we employ graph contrastive learning as a regularization term, which promotes two views of augmented nodes to have consistent representations. Since this regularization term cannot utilize label information, it can enhance the robustness of node representations to label noise. Moreover, to detect noisy labels on the graph, we present a sample selection technique based on the homophily assumption, which identifies noisy nodes by measuring the consistency between the labels with their neighbors. Finally, we purify these confident noisy labels to permit efficient semantic graph learning. Extensive experiments on three well-known benchmark datasets demonstrate the superiority of our CGNN over competing approaches.

Few-shot learning (FSL) methods typically assume clean support sets with accurately labeled samples when training on novel classes. This assumption can often be unrealistic: support sets, no matter how small, can still include mislabeled samples. Robustness to label noise is therefore essential for FSL methods to be practical, but this problem surprisingly remains largely unexplored. To address mislabeled samples in FSL settings, we make several technical contributions. (1) We offer simple, yet effective, feature aggregation methods, improving the prototypes used by ProtoNet, a popular FSL technique. (2) We describe a novel Transformer model for Noisy Few-Shot Learning (TraNFS). TraNFS leverages a transformer's attention mechanism to weigh mislabeled versus correct samples. (3) Finally, we extensively test these methods on noisy versions of MiniImageNet and TieredImageNet. Our results show that TraNFS is on-par with leading FSL methods on clean support sets, yet outperforms them, by far, in the presence of label noise.

Generating texts which express complex ideas spanning multiple sentences requires a structured representation of their content (document plan), but these representations are prohibitively expensive to manually produce. In this work, we address the problem of generating coherent multi-sentence texts from the output of an information extraction system, and in particular a knowledge graph. Graphical knowledge representations are ubiquitous in computing, but pose a significant challenge for text generation techniques due to their non-hierarchical nature, collapsing of long-distance dependencies, and structural variety. We introduce a novel graph transforming encoder which can leverage the relational structure of such knowledge graphs without imposing linearization or hierarchical constraints. Incorporated into an encoder-decoder setup, we provide an end-to-end trainable system for graph-to-text generation that we apply to the domain of scientific text. Automatic and human evaluations show that our technique produces more informative texts which exhibit better document structure than competitive encoder-decoder methods.

Video anomaly detection under weak labels is formulated as a typical multiple-instance learning problem in previous works. In this paper, we provide a new perspective, i.e., a supervised learning task under noisy labels. In such a viewpoint, as long as cleaning away label noise, we can directly apply fully supervised action classifiers to weakly supervised anomaly detection, and take maximum advantage of these well-developed classifiers. For this purpose, we devise a graph convolutional network to correct noisy labels. Based upon feature similarity and temporal consistency, our network propagates supervisory signals from high-confidence snippets to low-confidence ones. In this manner, the network is capable of providing cleaned supervision for action classifiers. During the test phase, we only need to obtain snippet-wise predictions from the action classifier without any extra post-processing. Extensive experiments on 3 datasets at different scales with 2 types of action classifiers demonstrate the efficacy of our method. Remarkably, we obtain the frame-level AUC score of 82.12% on UCF-Crime.

北京阿比特科技有限公司