亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Data visualization is powerful in persuading an audience. However, when it is done poorly or maliciously, a visualization may become misleading or even deceiving. Visualizations give further strength to the dissemination of misinformation on the Internet. The visualization research community has long been aware of visualizations that misinform the audience, mostly associated with the terms "lie" and "deceptive." Still, these discussions have focused only on a handful of cases. To better understand the landscape of misleading visualizations, we open-coded over one thousand real-world visualizations that have been reported as misleading. From these examples, we discovered 74 types of issues and formed a taxonomy of misleading elements in visualizations. We found four directions that the research community can follow to widen the discussion on misleading visualizations: (1) informal fallacies in visualizations, (2) exploiting conventions and data literacy, (3) deceptive tricks in uncommon charts, and (4) understanding the designers' dilemma. This work lays the groundwork for these research directions, especially in understanding, detecting, and preventing them.

相關內容

Researchers have developed several theoretical models for identifying and categorizing data analysis tasks for visualization systems. However, these models focus primarily on abstraction or generalizing specific tasks into higher-level concepts, resulting in broad guidelines that are not always straightforward to implement within visualization systems. Few models flow in the opposite direction to enable instantiation or a precise approach to applying high-level task concepts to specific analysis scenarios or user interaction logs. This paper presents a synthesis of existing task theory into a new instantiation-focused model and Pyxis, a specification language for applying this model to existing evaluation methods. Specifically, Pyxis enables researchers to dissect theoretical and study-driven analysis sessions to identify instances of tasks that users have performed. Further, it formalizes the relationship between tasks, insights, and objectives implied in prior work. We present three use cases that apply Pyxis to a wide range of analysis scenarios from the literature to demonstrate its utility. Finally, we discuss the model's implications and opportunities for future work.

We present a data-driven approach to characterizing nonidentifiability of a model's parameters and illustrate it through dynamic as well as steady kinetic models. By employing Diffusion Maps and their extensions, we discover the minimal combinations of parameters required to characterize the output behavior of a chemical system: a set of effective parameters for the model. Furthermore, we introduce and use a Conformal Autoencoder Neural Network technique, as well as a kernel-based Jointly Smooth Function technique, to disentangle the redundant parameter combinations that do not affect the output behavior from the ones that do. We discuss the interpretability of our data-driven effective parameters, and demonstrate the utility of the approach both for behavior prediction and parameter estimation. In the latter task, it becomes important to describe level sets in parameter space that are consistent with a particular output behavior. We validate our approach on a model of multisite phosphorylation, where a reduced set of effective parameters (nonlinear combinations of the physical ones) has previously been established analytically.

Humans are naturally endowed with the ability to write in a particular style. They can, for instance, re-phrase a formal letter in an informal way, convey a literal message with the use of figures of speech or edit a novel mimicking the style of some well-known authors. Automating this form of creativity constitutes the goal of style transfer. As a natural language generation task, style transfer aims at rewriting existing texts, and specifically, it creates paraphrases that exhibit some desired stylistic attributes. From a practical perspective, it envisions beneficial applications, like chat-bots that modulate their communicative style to appear empathetic, or systems that automatically simplify technical articles for a non-expert audience. Several style-aware paraphrasing methods have attempted to tackle style transfer. A handful of surveys give a methodological overview of the field, but they do not support researchers to focus on specific styles. With this paper, we aim at providing a comprehensive discussion of the styles that have received attention in the transfer task. We organize them in a hierarchy, highlighting the challenges for the definition of each of them, and pointing out gaps in the current research landscape. The hierarchy comprises two main groups. One encompasses styles that people modulate arbitrarily, along the lines of registers and genres. The other group corresponds to unintentionally expressed styles, due to an author's personal characteristics. Hence, our review shows how these groups relate to one another, and where specific styles, including some that have not yet been explored, belong in the hierarchy. Moreover, we summarize the methods employed for different stylistic families, hinting researchers towards those that would be the most fitting for future research.

AI alignment research is the field of study dedicated to ensuring that artificial intelligence (AI) benefits humans. As machine intelligence gets more advanced, this research is becoming increasingly important. Researchers in the field share ideas across different media to speed up the exchange of information. However, this focus on speed means that the research landscape is opaque, making it difficult for young researchers to enter the field. In this project, we collected and analyzed existing AI alignment research. We found that the field is growing quickly, with several subfields emerging in parallel. We looked at the subfields and identified the prominent researchers, recurring topics, and different modes of communication in each. Furthermore, we found that a classifier trained on AI alignment research articles can detect relevant articles that we did not originally include in the dataset. We are sharing the dataset with the research community and hope to develop tools in the future that will help both established researchers and young researchers get more involved in the field.

Connecting Vision and Language plays an essential role in Generative Intelligence. For this reason, in the last few years, a large research effort has been devoted to image captioning, i.e. the task of describing images with syntactically and semantically meaningful sentences. Starting from 2015 the task has generally been addressed with pipelines composed of a visual encoding step and a language model for text generation. During these years, both components have evolved considerably through the exploitation of object regions, attributes, and relationships and the introduction of multi-modal connections, fully-attentive approaches, and BERT-like early-fusion strategies. However, regardless of the impressive results obtained, research in image captioning has not reached a conclusive answer yet. This work aims at providing a comprehensive overview and categorization of image captioning approaches, from visual encoding and text generation to training strategies, used datasets, and evaluation metrics. In this respect, we quantitatively compare many relevant state-of-the-art approaches to identify the most impactful technical innovations in image captioning architectures and training strategies. Moreover, many variants of the problem and its open challenges are analyzed and discussed. The final goal of this work is to serve as a tool for understanding the existing state-of-the-art and highlighting the future directions for an area of research where Computer Vision and Natural Language Processing can find an optimal synergy.

Current deep learning research is dominated by benchmark evaluation. A method is regarded as favorable if it empirically performs well on the dedicated test set. This mentality is seamlessly reflected in the resurfacing area of continual learning, where consecutively arriving sets of benchmark data are investigated. The core challenge is framed as protecting previously acquired representations from being catastrophically forgotten due to the iterative parameter updates. However, comparison of individual methods is nevertheless treated in isolation from real world application and typically judged by monitoring accumulated test set performance. The closed world assumption remains predominant. It is assumed that during deployment a model is guaranteed to encounter data that stems from the same distribution as used for training. This poses a massive challenge as neural networks are well known to provide overconfident false predictions on unknown instances and break down in the face of corrupted data. In this work we argue that notable lessons from open set recognition, the identification of statistically deviating data outside of the observed dataset, and the adjacent field of active learning, where data is incrementally queried such that the expected performance gain is maximized, are frequently overlooked in the deep learning era. Based on these forgotten lessons, we propose a consolidated view to bridge continual learning, active learning and open set recognition in deep neural networks. Our results show that this not only benefits each individual paradigm, but highlights the natural synergies in a common framework. We empirically demonstrate improvements when alleviating catastrophic forgetting, querying data in active learning, selecting task orders, while exhibiting robust open world application where previously proposed methods fail.

There is a resurgent interest in developing intelligent open-domain dialog systems due to the availability of large amounts of conversational data and the recent progress on neural approaches to conversational AI. Unlike traditional task-oriented bots, an open-domain dialog system aims to establish long-term connections with users by satisfying the human need for communication, affection, and social belonging. This paper reviews the recent works on neural approaches that are devoted to addressing three challenges in developing such systems: semantics, consistency, and interactiveness. Semantics requires a dialog system to not only understand the content of the dialog but also identify user's social needs during the conversation. Consistency requires the system to demonstrate a consistent personality to win users trust and gain their long-term confidence. Interactiveness refers to the system's ability to generate interpersonal responses to achieve particular social goals such as entertainment, conforming, and task completion. The works we select to present here is based on our unique views and are by no means complete. Nevertheless, we hope that the discussion will inspire new research in developing more intelligent dialog systems.

Generative Adversarial Networks (GANs) have recently achieved impressive results for many real-world applications, and many GAN variants have emerged with improvements in sample quality and training stability. However, they have not been well visualized or understood. How does a GAN represent our visual world internally? What causes the artifacts in GAN results? How do architectural choices affect GAN learning? Answering such questions could enable us to develop new insights and better models. In this work, we present an analytic framework to visualize and understand GANs at the unit-, object-, and scene-level. We first identify a group of interpretable units that are closely related to object concepts using a segmentation-based network dissection method. Then, we quantify the causal effect of interpretable units by measuring the ability of interventions to control objects in the output. We examine the contextual relationship between these units and their surroundings by inserting the discovered object concepts into new images. We show several practical applications enabled by our framework, from comparing internal representations across different layers, models, and datasets, to improving GANs by locating and removing artifact-causing units, to interactively manipulating objects in a scene. We provide open source interpretation tools to help researchers and practitioners better understand their GAN models.

Image segmentation is an important component of many image understanding systems. It aims to group pixels in a spatially and perceptually coherent manner. Typically, these algorithms have a collection of parameters that control the degree of over-segmentation produced. It still remains a challenge to properly select such parameters for human-like perceptual grouping. In this work, we exploit the diversity of segments produced by different choices of parameters. We scan the segmentation parameter space and generate a collection of image segmentation hypotheses (from highly over-segmented to under-segmented). These are fed into a cost minimization framework that produces the final segmentation by selecting segments that: (1) better describe the natural contours of the image, and (2) are more stable and persistent among all the segmentation hypotheses. We compare our algorithm's performance with state-of-the-art algorithms, showing that we can achieve improved results. We also show that our framework is robust to the choice of segmentation kernel that produces the initial set of hypotheses.

北京阿比特科技有限公司