The integrating factor technique is widely used to solve numerically (in particular) the Schr{\"o}dinger equation in the context of spectral methods. Here, we present an improvement of this method exploiting the freedom provided by the gauge condition of the potential. Optimal gauge conditions are derived considering the equation and the temporal numerical resolution with an adaptive embedded scheme of arbitrary order. We illustrate this approach with the nonlinear Schr{\"o}dinger (NLS) and with the Schr{\"o}dinger-Newton (SN) equations. We show that this optimization increases significantly the overall computational speed, sometimes by a factor five or more. This gain is crucial for long time simulations.
In this paper, we consider a nonlinear beam equation with the p-biharmonic operator, where $1 < p < \infty$. Using a change of variable, we transform the problem into a system of differential equations and prove the existence, uniqueness and regularity of the weak solution by applying the Lax-Milgram theorem and classical results of functional analysis. We investigate the discrete formulation for that system and, with the aid of the Brouwer theorem, we show that the problem has a discrete solution. The uniqueness and stability of the discrete solution are obtained through classical methods. After establishing the order of convergence, we apply the mixed finite element method to obtain an algebraic system of equations. Finally, we implement the computational codes in Matlab software and perform the comparison between theory and simulations.
With the commercial availability of mixed precision hardware, mixed precision GMRES-based iterative refinement schemes have emerged as popular approaches for solving sparse linear systems. Existing analyses of these approaches, however, are all based on using a full LU factorization to construct preconditioners for use within GMRES in each refinement step. In practical applications, inexact preconditioning techniques, such as incomplete LU or sparse approximate inverses, are often used for performance reasons. In this work, we investigate the use of sparse approximate inverse preconditioners within GMRES-based iterative refinement. We analyze the computation of sparse approximate inverses in finite precision and derive constraints under which the user-specified stopping criteria will be satisfied. We then analyze the behavior of and convergence constraints for a GMRES-based iterative refinement scheme that uses sparse approximate inverse preconditioning, which we call SPAI-GMRES-IR. Our numerical experiments confirm that in some cases, sparse approximate inverse preconditioning can have an advantage over using a full LU factorization.
Time efficiency is one of the more critical concerns in computational fluid dynamics simulations of industrial applications. Extensive research has been conducted to improve the underlying numerical schemes to achieve time process reduction. Within this context, this paper presents a new time discretization method based on the Adomian decomposition technique for Euler equations. The obtained scheme is time-order adaptive; the order is automatically adjusted at each time step and over the space domain, leading to significant processing time reduction. The scheme is formulated in an appropriate recursive formula, and its efficiency is demonstrated through numerical tests by comparison to exact solutions and the popular Runge-Kutta-DG method.
In this paper, we propose a constructive interference (CI)-based block-level precoding (CI-BLP) approach for the downlink of a multi-user multiple-input single-output (MU-MISO) communication system. Contrary to existing CI precoding approaches which have to be designed on a symbol-by-symbol level, here a constant precoding matrix is applied to a block of symbol slots within a channel coherence interval, thus significantly reducing the computational costs over traditional CI-based symbol-level precoding (CI-SLP) as the CI-BLP optimization problem only needs to be solved once per block. For both PSK and QAM modulation, we formulate an optimization problem to maximize the minimum CI effect over the block subject to a block- rather than symbol-level power budget. We mathematically derive the optimal precoding matrix for CI-BLP as a function of the Lagrange multipliers in closed form. By formulating the dual problem, the original CI-BLP optimization problem is further shown to be equivalent to a quadratic programming (QP) optimization. Numerical results validate our derivations, and show that the proposed CI-BLP scheme achieves improved performance over the traditional CI-SLP method, thanks to the relaxed power constraint over the considered block of symbol slots.
The scope of this paper is the analysis and approximation of an optimal control problem related to the Allen-Cahn equation. A tracking functional is minimized subject to the Allen-Cahn equation using distributed controls that satisfy point-wise control constraints. First and second order necessary and sufficient conditions are proved. The lowest order discontinuous Galerkin - in time - scheme is considered for the approximation of the control to state and adjoint state mappings. Under a suitable restriction on maximum size of the temporal and spatial discretization parameters $k$, $h$ respectively in terms of the parameter $\epsilon$ that describes the thickness of the interface layer, a-priori estimates are proved with constants depending polynomially upon $1/ \epsilon$. Unlike to previous works for the uncontrolled Allen-Cahn problem our approach does not rely on a construction of an approximation of the spectral estimate, and as a consequence our estimates are valid under low regularity assumptions imposed by the optimal control setting. These estimates are also valid in cases where the solution and its discrete approximation do not satisfy uniform space-time bounds independent of $\epsilon$. These estimates and a suitable localization technique, via the second order condition (see \cite{Arada-Casas-Troltzsch_2002,Casas-Mateos-Troltzsch_2005,Casas-Raymond_2006,Casas-Mateos-Raymond_2007}), allows to prove error estimates for the difference between local optimal controls and their discrete approximation as well as between the associated state and adjoint state variables and their discrete approximations
This paper presents the convergence analysis of the spatial finite difference method (FDM) for the stochastic Cahn--Hilliard equation with Lipschitz nonlinearity and multiplicative noise. Based on fine estimates of the discrete Green function, we prove that both the spatial semi-discrete numerical solution and its Malliavin derivative have strong convergence order $1$. Further, by showing the negative moment estimates of the exact solution, we obtain that the density of the spatial semi-discrete numerical solution converges in $L^1(\mathbb R)$ to the exact one. Finally, we apply an exponential Euler method to discretize the spatial semi-discrete numerical solution in time and show that the temporal strong convergence order is nearly $\frac38$, where a difficulty we overcome is to derive the optimal H\"older continuity of the spatial semi-discrete numerical solution.
We present an efficient basis for imaginary time Green's functions based on a low rank decomposition of the spectral Lehmann representation. The basis functions are simply a set of well-chosen exponentials, so the corresponding expansion may be thought of as a discrete form of the Lehmann representation using an effective spectral density which is a sum of $\delta$ functions. The basis is determined only by an upper bound on the product $\beta \omega_{\max}$, with $\beta$ the inverse temperature and $\omega_{\max}$ an energy cutoff, and a user-defined error tolerance $\epsilon$. The number $r$ of basis functions scales as $\mathcal{O}\left(\log(\beta \omega_{\max}) \log (1/\epsilon)\right)$. The discrete Lehmann representation of a particular imaginary time Green's function can be recovered by interpolation at a set of $r$ imaginary time nodes. Both the basis functions and the interpolation nodes can be obtained rapidly using standard numerical linear algebra routines. Due to the simple form of the basis, the discrete Lehmann representation of a Green's function can be explicitly transformed to the Matsubara frequency domain, or obtained directly by interpolation on a Matsubara frequency grid. We benchmark the efficiency of the representation on simple cases, and with a high precision solution of the Sachdev-Ye-Kitaev equation at low temperature. We compare our approach with the related intermediate representation method, and introduce an improved algorithm to build the intermediate representation basis and a corresponding sampling grid.
The idea of using polynomial methods to improve simple smoother iterations within a multigrid method for a symmetric positive definite (SPD) system is revisited. When the single-step smoother itself corresponds to an SPD operator, there is in particular a very simple iteration, a close cousin of the Chebyshev semi-iterative method, based on the Chebyshev polynomials of the fourth instead of first kind, that optimizes a two-level bound going back to Hackbusch. A full V-cycle bound for general polynomial smoothers is derived using the V-cycle theory of McCormick. The fourth-kind Chebyshev iteration is quasi-optimal for the V-cycle bound. The optimal polynomials for the V-cycle bound can be found numerically, achieving an about 18% lower error contraction factor bound than the fourth-kind Chebyshev iteration, asymptotically as the number of smoothing steps goes to infinity. Implementation of the optimized iteration is discussed, and the performance of the polynomial smoothers are illustrated with a simple numerical example.
We present a faster interior-point method for optimizing sum-of-squares (SOS) polynomials, which are a central tool in polynomial optimization and capture convex programming in the Lasserre hierarchy. Let $p = \sum_i q^2_i$ be an $n$-variate SOS polynomial of degree $2d$. Denoting by $L := \binom{n+d}{d}$ and $U := \binom{n+2d}{2d}$ the dimensions of the vector spaces in which $q_i$'s and $p$ live respectively, our algorithm runs in time $\tilde{O}(LU^{1.87})$. This is polynomially faster than state-of-art SOS and semidefinite programming solvers, which achieve runtime $\tilde{O}(L^{0.5}\min\{U^{2.37}, L^{4.24}\})$. The centerpiece of our algorithm is a dynamic data structure for maintaining the inverse of the Hessian of the SOS barrier function under the polynomial interpolant basis, which efficiently extends to multivariate SOS optimization, and requires maintaining spectral approximations to low-rank perturbations of elementwise (Hadamard) products. This is the main challenge and departure from recent IPM breakthroughs using inverse-maintenance, where low-rank updates to the slack matrix readily imply the same for the Hessian matrix.
Despite its great success, machine learning can have its limits when dealing with insufficient training data. A potential solution is the additional integration of prior knowledge into the training process which leads to the notion of informed machine learning. In this paper, we present a structured overview of various approaches in this field. We provide a definition and propose a concept for informed machine learning which illustrates its building blocks and distinguishes it from conventional machine learning. We introduce a taxonomy that serves as a classification framework for informed machine learning approaches. It considers the source of knowledge, its representation, and its integration into the machine learning pipeline. Based on this taxonomy, we survey related research and describe how different knowledge representations such as algebraic equations, logic rules, or simulation results can be used in learning systems. This evaluation of numerous papers on the basis of our taxonomy uncovers key methods in the field of informed machine learning.