Caution: this paper may include material that could be offensive or distressing. The advent of Large Language Models (LLMs) necessitates the development of training approaches that mitigate the generation of unethical language and aptly manage toxic user queries. Given the challenges related to human labor and the scarcity of data, we present KoTox, comprising 39K unethical instruction-output pairs. This collection of automatically generated toxic instructions refines the training of LLMs and establishes a foundational framework for improving LLMs' ethical awareness and response to various toxic inputs, promoting more secure and responsible interactions in Natural Language Processing (NLP) applications.
This paper introduces a novel (HDAG - Harmonic Detection for Auditory Gain) method for speech intelligibility enhancement in noisy scenarios. In the proposed scheme, a series of selective Gammachirp filters are adopted to emphasize the harmonic components of speech reducing the masking effects of acoustic noises. The fundamental frequency are estimated by the HHT-Amp technique. Harmonic patterns estimated with low accuracy are detected and adjusted according the FSFFE low/high pitch separation. The central frequencies of the filterbank are defined considering the third octave subbands which are best suited to cover the regions most relevant to intelligibility. Before signal reconstruction, the gammachirp filtered components are amplified by gain factors regulated by FSFFE classification. The proposed HDAG solution and three baseline techniques are examined considering six background noises with four signal-to-noise ratios. Three objective measures are adopted for the evaluation of speech intelligibility and quality. Several experiments are conducted to demonstrate that the proposed scheme achieves better speech intelligibility improvement when compared to the competing approaches. A perceptual listening test is further considered and corroborates with the objective results.
This paper presents an innovative approach to integrating Large Language Models (LLMs) with Arduino-controlled Electrohydrodynamic (EHD) pumps for precise color synthesis in automation systems. We propose a novel framework that employs fine-tuned LLMs to interpret natural language commands and convert them into specific operational instructions for EHD pump control. This approach aims to enhance user interaction with complex hardware systems, making it more intuitive and efficient. The methodology involves four key steps: fine-tuning the language model with a dataset of color specifications and corresponding Arduino code, developing a natural language processing interface, translating user inputs into executable Arduino code, and controlling EHD pumps for accurate color mixing. Conceptual experiment results, based on theoretical assumptions, indicate a high potential for accurate color synthesis, efficient language model interpretation, and reliable EHD pump operation. This research extends the application of LLMs beyond text-based tasks, demonstrating their potential in industrial automation and control systems. While highlighting the limitations and the need for real-world testing, this study opens new avenues for AI applications in physical system control and sets a foundation for future advancements in AI-driven automation technologies.
Strategies for partially observable Markov decision processes (POMDP) typically require memory. One way to represent this memory is via automata. We present a method to learn an automaton representation of a strategy using a modification of the L*-algorithm. Compared to the tabular representation of a strategy, the resulting automaton is dramatically smaller and thus also more explainable. Moreover, in the learning process, our heuristics may even improve the strategy's performance. In contrast to approaches that synthesize an automaton directly from the POMDP thereby solving it, our approach is incomparably more scalable.
Various static analysis problems are reformulated as instances of the Context-Free Language Reachability (CFL-r) problem. One promising way to make solving CFL-r more practical for large-scale interprocedural graphs is to reduce CFL-r to linear algebra operations on sparse matrices, as they are efficiently executed on modern hardware. In this work, we present five optimizations for a matrix-based CFL-r algorithm that utilize the specific properties of both the underlying semiring and the widely-used linear algebra library SuiteSparse:GraphBlas. Our experimental results show that these optimizations result in orders of magnitude speedup, with the optimized matrix-based CFL-r algorithm consistently outperforming state-of-the-art CFL-r solvers across four considered static analyses.
We systematically analyze the accuracy of Physics-Informed Neural Networks (PINNs) in approximating solutions to the critical Surface Quasi-Geostrophic (SQG) equation on two-dimensional periodic boxes. The critical SQG equation involves advection and diffusion described by nonlocal periodic operators, posing challenges for neural network-based methods that do not commonly exhibit periodic boundary conditions. In this paper, we present a novel approximation of these operators using their nonperiodic analogs based on singular integral representation formulas and use it to perform error estimates. This idea can be generalized to a larger class of nonlocal partial differential equations whose solutions satisfy prescribed boundary conditions, thereby initiating a new PINNs theory for equations with nonlocalities.
Electroencephalography (EEG) signals are frequently used for various Brain-Computer Interface (BCI) tasks. While Deep Learning (DL) techniques have shown promising results, they are hindered by the substantial data requirements. By leveraging data from multiple subjects, transfer learning enables more effective training of DL models. A technique that is gaining popularity is Euclidean Alignment (EA) due to its ease of use, low computational complexity, and compatibility with Deep Learning models. However, few studies evaluate its impact on the training performance of shared and individual DL models. In this work, we systematically evaluate the effect of EA combined with DL for decoding BCI signals. We used EA to train shared models with data from multiple subjects and evaluated its transferability to new subjects. Our experimental results show that it improves decoding in the target subject by 4.33% and decreases convergence time by more than 70%. We also trained individual models for each subject to use as a majority-voting ensemble classifier. In this scenario, using EA improved the 3-model ensemble accuracy by 3.7%. However, when compared to the shared model with EA, the ensemble accuracy was 3.62% lower.
Neural construction models have shown promising performance for Vehicle Routing Problems (VRPs) by adopting either the Autoregressive (AR) or Non-Autoregressive (NAR) learning approach. While AR models produce high-quality solutions, they generally have a high inference latency due to their sequential generation nature. Conversely, NAR models generate solutions in parallel with a low inference latency but generally exhibit inferior performance. In this paper, we propose a generic Guided Non-Autoregressive Knowledge Distillation (GNARKD) method to obtain high-performance NAR models having a low inference latency. GNARKD removes the constraint of sequential generation in AR models while preserving the learned pivotal components in the network architecture to obtain the corresponding NAR models through knowledge distillation. We evaluate GNARKD by applying it to three widely adopted AR models to obtain NAR VRP solvers for both synthesized and real-world instances. The experimental results demonstrate that GNARKD significantly reduces the inference time (4-5 times faster) with acceptable performance drop (2-3\%). To the best of our knowledge, this study is first-of-its-kind to obtain NAR VRP solvers from AR ones through knowledge distillation.
This paper proposes two methods for causal additive models with unobserved variables (CAM-UV). CAM-UV assumes that the causal functions take the form of generalized additive models and that latent confounders are present. First, we propose a method that leverages prior knowledge for efficient causal discovery. Then, we propose an extension of this method for inferring causality in time series data. The original CAM-UV algorithm differs from other existing causal function models in that it does not seek the causal order between observed variables, but rather aims to identify the causes for each observed variable. Therefore, the first proposed method in this paper utilizes prior knowledge, such as understanding that certain variables cannot be causes of specific others. Moreover, by incorporating the prior knowledge that causes precedes their effects in time, we extend the first algorithm to the second method for causal discovery in time series data. We validate the first proposed method by using simulated data to demonstrate that the accuracy of causal discovery increases as more prior knowledge is accumulated. Additionally, we test the second proposed method by comparing it with existing time series causal discovery methods, using both simulated data and real-world data.
Deep Convolutional Neural Networks (CNNs) are a special type of Neural Networks, which have shown state-of-the-art results on various competitive benchmarks. The powerful learning ability of deep CNN is largely achieved with the use of multiple non-linear feature extraction stages that can automatically learn hierarchical representation from the data. Availability of a large amount of data and improvements in the hardware processing units have accelerated the research in CNNs and recently very interesting deep CNN architectures are reported. The recent race in deep CNN architectures for achieving high performance on the challenging benchmarks has shown that the innovative architectural ideas, as well as parameter optimization, can improve the CNN performance on various vision-related tasks. In this regard, different ideas in the CNN design have been explored such as use of different activation and loss functions, parameter optimization, regularization, and restructuring of processing units. However, the major improvement in representational capacity is achieved by the restructuring of the processing units. Especially, the idea of using a block as a structural unit instead of a layer is gaining substantial appreciation. This survey thus focuses on the intrinsic taxonomy present in the recently reported CNN architectures and consequently, classifies the recent innovations in CNN architectures into seven different categories. These seven categories are based on spatial exploitation, depth, multi-path, width, feature map exploitation, channel boosting and attention. Additionally, it covers the elementary understanding of the CNN components and sheds light on the current challenges and applications of CNNs.
Visual Question Answering (VQA) models have struggled with counting objects in natural images so far. We identify a fundamental problem due to soft attention in these models as a cause. To circumvent this problem, we propose a neural network component that allows robust counting from object proposals. Experiments on a toy task show the effectiveness of this component and we obtain state-of-the-art accuracy on the number category of the VQA v2 dataset without negatively affecting other categories, even outperforming ensemble models with our single model. On a difficult balanced pair metric, the component gives a substantial improvement in counting over a strong baseline by 6.6%.