Social media platforms have been exploited to disseminate misinformation in recent years. The widespread online misinformation has been shown to affect users' beliefs and is connected to social impact such as polarization. In this work, we focus on misinformation's impact on specific user behavior and aim to understand whether general Twitter users changed their behavior after being exposed to misinformation. We compare the before and after behavior of exposed users to determine whether the frequency of the tweets they posted, or the sentiment of their tweets underwent any significant change. Our results indicate that users overall exhibited statistically significant changes in behavior across some of these metrics. Through language distance analysis, we show that exposed users were already different from baseline users before the exposure. We also study the characteristics of two specific user groups, multi-exposure and extreme change groups, which were potentially highly impacted. Finally, we study if the changes in the behavior of the users after exposure to misinformation tweets vary based on the number of their followers or the number of followers of the tweet authors, and find that their behavioral changes are all similar.
Social recommendation is effective in improving the recommendation performance by leveraging social relations from online social networking platforms. Social relations among users provide friends' information for modeling users' interest in candidate items and help items expose to potential consumers (i.e., item attraction). However, there are two issues haven't been well-studied: Firstly, for the user interests, existing methods typically aggregate friends' information contextualized on the candidate item only, and this shallow context-aware aggregation makes them suffer from the limited friends' information. Secondly, for the item attraction, if the item's past consumers are the friends of or have a similar consumption habit to the targeted user, the item may be more attractive to the targeted user, but most existing methods neglect the relation enhanced context-aware item attraction. To address the above issues, we proposed DICER (Dual Side Deep Context-aware Modulation for SocialRecommendation). Specifically, we first proposed a novel graph neural network to model the social relation and collaborative relation, and on top of high-order relations, a dual side deep context-aware modulation is introduced to capture the friends' information and item attraction. Empirical results on two real-world datasets show the effectiveness of the proposed model and further experiments are conducted to help understand how the dual context-aware modulation works.
There is increasing interest in developing personalized Task-oriented Dialogue Systems (TDSs). Previous work on personalized TDSs often assumes that complete user profiles are available for most or even all users. This is unrealistic because (1) not everyone is willing to expose their profiles due to privacy concerns; and (2) rich user profiles may involve a large number of attributes (e.g., gender, age, tastes, . . .). In this paper, we study personalized TDSs without assuming that user profiles are complete. We propose a Cooperative Memory Network (CoMemNN) that has a novel mechanism to gradually enrich user profiles as dialogues progress and to simultaneously improve response selection based on the enriched profiles. CoMemNN consists of two core modules: User Profile Enrichment (UPE) and Dialogue Response Selection (DRS). The former enriches incomplete user profiles by utilizing collaborative information from neighbor users as well as current dialogues. The latter uses the enriched profiles to update the current user query so as to encode more useful information, based on which a personalized response to a user request is selected. We conduct extensive experiments on the personalized bAbI dialogue benchmark datasets. We find that CoMemNN is able to enrich user profiles effectively, which results in an improvement of 3.06% in terms of response selection accuracy compared to state-of-the-art methods. We also test the robustness of CoMemNN against incompleteness of user profiles by randomly discarding attribute values from user profiles. Even when discarding 50% of the attribute values, CoMemNN is able to match the performance of the best performing baseline without discarding user profiles, showing the robustness of CoMemNN.
In recommender systems, modeling user-item behaviors is essential for user representation learning. Existing sequential recommenders consider the sequential correlations between historically interacted items for capturing users' historical preferences. However, since users' preferences are by nature time-evolving and diversified, solely modeling the historical preference (without being aware of the time-evolving trends of preferences) can be inferior for recommending complementary or fresh items and thus hurt the effectiveness of recommender systems. In this paper, we bridge the gap between the past preference and potential future preference by proposing the future-aware diverse trends (FAT) framework. By future-aware, for each inspected user, we construct the future sequences from other similar users, which comprise of behaviors that happen after the last behavior of the inspected user, based on a proposed neighbor behavior extractor. By diverse trends, supposing the future preferences can be diversified, we propose the diverse trends extractor and the time-aware mechanism to represent the possible trends of preferences for a given user with multiple vectors. We leverage both the representations of historical preference and possible future trends to obtain the final recommendation. The quantitative and qualitative results from relatively extensive experiments on real-world datasets demonstrate the proposed framework not only outperforms the state-of-the-art sequential recommendation methods across various metrics, but also makes complementary and fresh recommendations.
Distributional semantics has had enormous empirical success in Computational Linguistics and Cognitive Science in modeling various semantic phenomena, such as semantic similarity, and distributional models are widely used in state-of-the-art Natural Language Processing systems. However, the theoretical status of distributional semantics within a broader theory of language and cognition is still unclear: What does distributional semantics model? Can it be, on its own, a fully adequate model of the meanings of linguistic expressions? The standard answer is that distributional semantics is not fully adequate in this regard, because it falls short on some of the central aspects of formal semantic approaches: truth conditions, entailment, reference, and certain aspects of compositionality. We argue that this standard answer rests on a misconception: These aspects do not belong in a theory of expression meaning, they are instead aspects of speaker meaning, i.e., communicative intentions in a particular context. In a slogan: words do not refer, speakers do. Clearing this up enables us to argue that distributional semantics on its own is an adequate model of expression meaning. Our proposal sheds light on the role of distributional semantics in a broader theory of language and cognition, its relationship to formal semantics, and its place in computational models.
The Everyday Sexism Project documents everyday examples of sexism reported by volunteer contributors from all around the world. It collected 100,000 entries in 13+ languages within the first 3 years of its existence. The content of reports in various languages submitted to Everyday Sexism is a valuable source of crowdsourced information with great potential for feminist and gender studies. In this paper, we take a computational approach to analyze the content of reports. We use topic-modelling techniques to extract emerging topics and concepts from the reports, and to map the semantic relations between those topics. The resulting picture closely resembles and adds to that arrived at through qualitative analysis, showing that this form of topic modeling could be useful for sifting through datasets that had not previously been subject to any analysis. More precisely, we come up with a map of topics for two different resolutions of our topic model and discuss the connection between the identified topics. In the low resolution picture, for instance, we found Public space/Street, Online, Work related/Office, Transport, School, Media harassment, and Domestic abuse. Among these, the strongest connection is between Public space/Street harassment and Domestic abuse and sexism in personal relationships.The strength of the relationships between topics illustrates the fluid and ubiquitous nature of sexism, with no single experience being unrelated to another.
The pervasive use of social media provides massive data about individuals' online social activities and their social relations. The building block of most existing recommendation systems is the similarity between users with social relations, i.e., friends. While friendship ensures some homophily, the similarity of a user with her friends can vary as the number of friends increases. Research from sociology suggests that friends are more similar than strangers, but friends can have different interests. Exogenous information such as comments and ratings may help discern different degrees of agreement (i.e., congruity) among similar users. In this paper, we investigate if users' congruity can be incorporated into recommendation systems to improve it's performance. Experimental results demonstrate the effectiveness of embedding congruity related information into recommendation systems.
Poor nutrition can lead to reduced immunity, increased susceptibility to disease, impaired physical and mental development, and reduced productivity. A conversational agent can support people as a virtual coach, however building such systems still have its associated challenges and limitations. This paper describes the background and motivation for chatbot systems in the context of healthy nutrition recommendation. We discuss current challenges associated with chatbot application, we tackled technical, theoretical, behavioural, and social aspects of the challenges. We then propose a pipeline to be used as guidelines by developers to implement theoretically and technically robust chatbot systems.
Recommender systems are one of the most successful applications of data mining and machine learning technology in practice. Academic research in the field is historically often based on the matrix completion problem formulation, where for each user-item-pair only one interaction (e.g., a rating) is considered. In many application domains, however, multiple user-item interactions of different types can be recorded over time. And, a number of recent works have shown that this information can be used to build richer individual user models and to discover additional behavioral patterns that can be leveraged in the recommendation process. In this work we review existing works that consider information from such sequentially-ordered user- item interaction logs in the recommendation process. Based on this review, we propose a categorization of the corresponding recommendation tasks and goals, summarize existing algorithmic solutions, discuss methodological approaches when benchmarking what we call sequence-aware recommender systems, and outline open challenges in the area.
Recommender systems play a crucial role in mitigating the problem of information overload by suggesting users' personalized items or services. The vast majority of traditional recommender systems consider the recommendation procedure as a static process and make recommendations following a fixed strategy. In this paper, we propose a novel recommender system with the capability of continuously improving its strategies during the interactions with users. We model the sequential interactions between users and a recommender system as a Markov Decision Process (MDP) and leverage Reinforcement Learning (RL) to automatically learn the optimal strategies via recommending trial-and-error items and receiving reinforcements of these items from users' feedbacks. In particular, we introduce an online user-agent interacting environment simulator, which can pre-train and evaluate model parameters offline before applying the model online. Moreover, we validate the importance of list-wise recommendations during the interactions between users and agent, and develop a novel approach to incorporate them into the proposed framework LIRD for list-wide recommendations. The experimental results based on a real-world e-commerce dataset demonstrate the effectiveness of the proposed framework.
This project addresses the problem of sentiment analysis in twitter; that is classifying tweets according to the sentiment expressed in them: positive, negative or neutral. Twitter is an online micro-blogging and social-networking platform which allows users to write short status updates of maximum length 140 characters. It is a rapidly expanding service with over 200 million registered users - out of which 100 million are active users and half of them log on twitter on a daily basis - generating nearly 250 million tweets per day. Due to this large amount of usage we hope to achieve a reflection of public sentiment by analysing the sentiments expressed in the tweets. Analysing the public sentiment is important for many applications such as firms trying to find out the response of their products in the market, predicting political elections and predicting socioeconomic phenomena like stock exchange. The aim of this project is to develop a functional classifier for accurate and automatic sentiment classification of an unknown tweet stream.