亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Researchers across cognitive, neuro-, and computer sciences increasingly reference human-like artificial intelligence and neuroAI. However, the scope and use of the terms are often inconsistent. Contributed research ranges widely from mimicking behaviour, to testing machine learning methods as neurally plausible hypotheses at the cellular or functional levels, or solving engineering problems. However, it cannot be assumed nor expected that progress on one of these three goals will automatically translate to progress in others. Here a simple rubric is proposed to clarify the scope of individual contributions, grounded in their commitments to human-like behaviour, neural plausibility, or benchmark/engineering goals. This is clarified using examples of weak and strong neuroAI and human-like agents, and discussing the generative, corroborate, and corrective ways in which the three dimensions interact with one another. The author maintains that future progress in artificial intelligence will need strong interactions across the disciplines, with iterative feedback loops and meticulous validity tests, leading to both known and yet-unknown advances that may span decades to come.

相關內容

IFIP TC13 Conference on Human-Computer Interaction是人機交互領域的研究者和實踐者展示其工作的重要平臺。多年來,這些會議吸引了來自幾個國家和文化的研究人員。官網鏈接: · Performer · 機器人 · 穩健性 · CASE ·
2023 年 2 月 10 日

Mobile robots are ubiquitous. Such vehicles benefit from well-designed and calibrated control algorithms ensuring their task execution under precise uncertainty bounds. Yet, in tasks involving humans in the loop, such as elderly or mobility impaired, the problem takes a new dimension. In such cases, the system needs not only to compensate for uncertainty and volatility in its operation but at the same time to anticipate and offer responses that go beyond robust. Such robots operate in cluttered, complex environments, akin to human residences, and need to face during their operation sensor and, even, actuator faults, and still operate. This is where our thesis comes into the foreground. We propose a new control design framework based on the principles of antifragility. Such a design is meant to offer a high uncertainty anticipation given previous exposure to failures and faults, and exploit this anticipation capacity to provide performance beyond robust. In the current instantiation of antifragile control applied to mobile robot trajectory tracking, we provide controller design steps, the analysis of performance under parametrizable uncertainty and faults, as well as an extended comparative evaluation against state-of-the-art controllers. We believe in the potential antifragile control has in achieving closed-loop performance in the face of uncertainty and volatility by using its exposures to uncertainty to increase its capacity to anticipate and compensate for such events.

We revisit the estimation bias in policy gradients for the discounted episodic Markov decision process (MDP) from Deep Reinforcement Learning (DRL) perspective. The objective is formulated theoretically as the expected returns discounted over the time horizon. One of the major policy gradient biases is the state distribution shift: the state distribution used to estimate the gradients differs from the theoretical formulation in that it does not take into account the discount factor. Existing discussion of the influence of this bias was limited to the tabular and softmax cases in the literature. Therefore, in this paper, we extend it to the DRL setting where the policy is parameterized and demonstrate how this bias can lead to suboptimal policies theoretically. We then discuss why the empirically inaccurate implementations with shifted state distribution can still be effective. We show that, despite such state distribution shift, the policy gradient estimation bias can be reduced in the following three ways: 1) a small learning rate; 2) an adaptive-learning-rate-based optimizer; and 3) KL regularization. Specifically, we show that a smaller learning rate, or, an adaptive learning rate, such as that used by Adam and RSMProp optimizers, makes the policy optimization robust to the bias. We further draw connections between optimizers and the optimization regularization to show that both the KL and the reverse KL regularization can significantly rectify this bias. Moreover, we provide extensive experiments on continuous control tasks to support our analysis. Our paper sheds light on how successful PG algorithms optimize policies in the DRL setting, and contributes insights into the practical issues in DRL.

Recent advancements in artificial intelligence (AI) have seen the emergence of smart video surveillance (SVS) in many practical applications, particularly for building safer and more secure communities in our urban environments. Cognitive tasks, such as identifying objects, recognizing actions, and detecting anomalous behaviors, can produce data capable of providing valuable insights to the community through statistical and analytical tools. However, artificially intelligent surveillance systems design requires special considerations for ethical challenges and concerns. The use and storage of personally identifiable information (PII) commonly pose an increased risk to personal privacy. To address these issues, this paper identifies the privacy concerns and requirements needed to address when designing AI-enabled smart video surveillance. Further, we propose the first end-to-end AI-enabled privacy-preserving smart video surveillance system that holistically combines computer vision analytics, statistical data analytics, cloud-native services, and end-user applications. Finally, we propose quantitative and qualitative metrics to evaluate intelligent video surveillance systems. The system shows the 17.8 frame-per-second (FPS) processing in extreme video scenes. However, considering privacy in designing such a system results in preferring the pose-based algorithm to the pixel-based one. This choice resulted in dropping accuracy in both action and anomaly detection tasks. The results drop from 97.48 to 73.72 in anomaly detection and 96 to 83.07 in the action detection task. On average, the latency of the end-to-end system is 36.1 seconds.

For the last decade, convolutional neural networks (CNNs) have vastly superseded their predecessors in nearly all vision tasks in artificial intelligence, including object recognition. However, despite abundant advancements, they continue to pale in comparison to biological vision. This chasm has prompted the development of biologically-inspired models that have attempted to mimic the human visual system, primarily at a neural level, which is evaluated using standard dataset benchmarks. However, more work is needed to understand how these models perceive the visual world. This article proposes a state-of-the-art procedure that generates a new metric, Psychophysical-Score, which is grounded in visual psychophysics and is capable of reliably estimating perceptual responses across numerous models -- representing a large range in complexity and biological inspiration. We perform the procedure on twelve models that vary in degree of biological inspiration and complexity, we compare the results against the aggregated results of 2,390 Amazon Mechanical Turk workers who together provided ~2.7 million perceptual responses. Each model's Psychophysical-Score is compared against the state-of-the-art neural activity-based metric, Brain-Score. Our study indicates that models with a high correlation to human perceptual behavior also have a high correlation with the corresponding neural activity.

Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.

This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.

Seamlessly interacting with humans or robots is hard because these agents are non-stationary. They update their policy in response to the ego agent's behavior, and the ego agent must anticipate these changes to co-adapt. Inspired by humans, we recognize that robots do not need to explicitly model every low-level action another agent will make; instead, we can capture the latent strategy of other agents through high-level representations. We propose a reinforcement learning-based framework for learning latent representations of an agent's policy, where the ego agent identifies the relationship between its behavior and the other agent's future strategy. The ego agent then leverages these latent dynamics to influence the other agent, purposely guiding them towards policies suitable for co-adaptation. Across several simulated domains and a real-world air hockey game, our approach outperforms the alternatives and learns to influence the other agent.

Interest in the field of Explainable Artificial Intelligence has been growing for decades and has accelerated recently. As Artificial Intelligence models have become more complex, and often more opaque, with the incorporation of complex machine learning techniques, explainability has become more critical. Recently, researchers have been investigating and tackling explainability with a user-centric focus, looking for explanations to consider trustworthiness, comprehensibility, explicit provenance, and context-awareness. In this chapter, we leverage our survey of explanation literature in Artificial Intelligence and closely related fields and use these past efforts to generate a set of explanation types that we feel reflect the expanded needs of explanation for today's artificial intelligence applications. We define each type and provide an example question that would motivate the need for this style of explanation. We believe this set of explanation types will help future system designers in their generation and prioritization of requirements and further help generate explanations that are better aligned to users' and situational needs.

Reinforcement learning (RL) is a popular paradigm for addressing sequential decision tasks in which the agent has only limited environmental feedback. Despite many advances over the past three decades, learning in many domains still requires a large amount of interaction with the environment, which can be prohibitively expensive in realistic scenarios. To address this problem, transfer learning has been applied to reinforcement learning such that experience gained in one task can be leveraged when starting to learn the next, harder task. More recently, several lines of research have explored how tasks, or data samples themselves, can be sequenced into a curriculum for the purpose of learning a problem that may otherwise be too difficult to learn from scratch. In this article, we present a framework for curriculum learning (CL) in reinforcement learning, and use it to survey and classify existing CL methods in terms of their assumptions, capabilities, and goals. Finally, we use our framework to find open problems and suggest directions for future RL curriculum learning research.

北京阿比特科技有限公司