In this paper, we employ active simultaneously transmitting and reflecting reconfigurable intelligent surface (ASRIS) to aid in establishing and enhancing communication within a commensal symbiotic radio (CSR) network. Unlike traditional RIS, ASRIS not only ensures coverage in an omni directional manner but also amplifies received signals, consequently elevating overall network performance. in the first phase, base station (BS) with active massive MIMO antennas, send ambient signal to SBDs. In the first phase, the BS transmits ambient signals to the symbiotic backscatter devices (SBDs), and after harvesting the energy and modulating their information onto the signal carrier, the SBDs send Backscatter signals back to the BS. In this scheme, we employ the Backscatter Relay system to facilitate the transmission of information from the SBDs to the symbiotic User Equipments (SUEs) with the assistance of the BS. In the second phase, the BS transmits information signals to the SUEs after eliminating interference using the Successive Interference Cancellation (SIC) method. ASRIS is employed to establish communication among SUEs lacking a line of sight (LoS) and to amplify power signals for SUEs with a LoS connection to the BS. It is worth noting that we use NOMA for multiple access in all network. The main goal of this paper is to maximize the sum throughput between all users. To achieve this, we formulate an optimization problem with variables including active beamforming coefficients at the BS and ASRIS, as well as the phase adjustments of ASRIS and scheduling parameters between the first and second phases. To model this optimization problem, we employ three deep reinforcement learning (DRL) methods, namely PPO, TD3, and A3C. Finally, the mentioned methods are simulated and compared with each other.
In this paper, we address the task of aberration-aware depth-from-defocus (DfD), which takes account of spatially variant point spread functions (PSFs) of a real camera. To effectively obtain the spatially variant PSFs of a real camera without requiring any ground-truth PSFs, we propose a novel self-supervised learning method that leverages the pair of real sharp and blurred images, which can be easily captured by changing the aperture setting of the camera. In our PSF estimation, we assume rotationally symmetric PSFs and introduce the polar coordinate system to more accurately learn the PSF estimation network. We also handle the focus breathing phenomenon that occurs in real DfD situations. Experimental results on synthetic and real data demonstrate the effectiveness of our method regarding both the PSF estimation and the depth estimation.
In this paper, we study the question whether techniques employed, in a conventional system, by state-of-the-art concurrent algorithms to avoid contended hot spots are still efficient for recoverable computing in settings with Non-Volatile Memory (NVM). We focus on concurrent FIFO queues that have two end-points, head and tail, which are highly contended. We present a persistent FIFO queue implementation that performs a pair of persistence instructions per operation (enqueue or dequeue). The algorithm achieves to perform these instructions on variables of low contention by employing Fetch&Increment and using the state-of-the-art queue implementation by Afek and Morrison (PPoPP'13). These result in performance that is up to 2x faster than state-of-the-art persistent FIFO queue implementations.
The research presented in this paper is aimed at developing a control algorithm for an autonomous surface system carrying a two-sensor array consisting of two acoustic receivers, capable of measuring the time-difference-of-arrival (TDOA) of a quasiperiodic underwater acoustic signal and utilizing this value to steer the system toward the acoustic source in the horizontal plane. Stability properties of the proposed algorithm are analyzed using the Lie bracket approximation technique. Furthermore, simulation results are presented, where particular attention is given to the relationship between the time difference of arrival measurement noise and the sensor baseline - the distance between the two acoustic receivers. Also, the influence of a constant disturbance caused by sea currents is considered. Finally, experimental results in which the algorithm was deployed on two autonomous surface vehicles, each equipped with a single acoustic receiver, are presented. The algorithm successfully steers the vehicle formation toward the acoustic source, despite the measurement noise and intermittent measurements, thus showing the feasibility of the proposed algorithm in real-life conditions.
In this paper, we unveil a fundamental side channel in Wi-Fi networks, specifically the observable frame size, which can be exploited by attackers to conduct TCP hijacking attacks. Despite the various security mechanisms (e.g., WEP and WPA2/WPA3) implemented to safeguard Wi-Fi networks, our study reveals that an off path attacker can still extract sufficient information from the frame size side channel to hijack the victim's TCP connection. Our side channel attack is based on two significant findings: (i) response packets (e.g., ACK and RST) generated by TCP receivers vary in size, and (ii) the encrypted frames containing these response packets have consistent and distinguishable sizes. By observing the size of the victim's encrypted frames, the attacker can detect and hijack the victim's TCP connections. We validate the effectiveness of this side channel attack through two case studies, i.e., SSH DoS and web traffic manipulation. Furthermore, we conduct extensive measurements to evaluate the impact of our attack on real-world Wi-Fi networks. We test 30 popular wireless routers from 9 well-known vendors, and none of these routers can protect victims from our attack. Also, we implement our attack in 80 real-world Wi-Fi networks and successfully hijack the victim's TCP connections in 69 (86%) evaluated Wi-Fi networks. We have responsibly disclosed the vulnerability to the Wi-Fi Alliance and proposed several mitigation strategies to address this issue.
In this paper, we conduct a comprehensive analysis of generalization properties of Kernel Ridge Regression (KRR) in the noiseless regime, a scenario crucial to scientific computing, where data are often generated via computer simulations. We prove that KRR can attain the minimax optimal rate, which depends on both the eigenvalue decay of the associated kernel and the relative smoothness of target functions. Particularly, when the eigenvalue decays exponentially fast, KRR achieves the spectral accuracy, i.e., a convergence rate faster than any polynomial. Moreover, the numerical experiments well corroborate our theoretical findings. Our proof leverages a novel extension of the duality framework introduced by Chen et al. (2023), which could be useful in analyzing kernel-based methods beyond the scope of this work.
In this paper, we adopt conformal prediction, a distribution-free uncertainty quantification (UQ) framework, to obtain confidence prediction intervals with coverage guarantees for Deep Operator Network (DeepONet) regression. Initially, we enhance the uncertainty quantification frameworks (B-DeepONet and Prob-DeepONet) previously proposed by the authors by using split conformal prediction. By combining conformal prediction with our Prob- and B-DeepONets, we effectively quantify uncertainty by generating rigorous confidence intervals for DeepONet prediction. Additionally, we design a novel Quantile-DeepONet that allows for a more natural use of split conformal prediction. We refer to this distribution-free effective uncertainty quantification framework as split conformal Quantile-DeepONet regression. Finally, we demonstrate the effectiveness of the proposed methods using various ordinary, partial differential equation numerical examples, and multi-fidelity learning.
Recently, two-dimensional (2D) array codes have been found to have applications in wireless communication.In this paper, we propose direct construction of 2D complete complementary codes (2D-CCCs) with arbitrary array size and flexible set size using multivariable functions (MVF). The Peak-to-mean envelope power ratio (PMEPR) properties of row and column sequences of the constructed 2D-CCC arrays are investigated. The proposed construction generalizes many of the existing state-of-the-art such as Golay complementary pair (GCP), one-dimensional (1D)-CCC, 2D Golay complementary array set (2D-GCAS), and 2D-CCC with better parameters compared to the existing work.
In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.
In this paper, we introduce the Reinforced Mnemonic Reader for machine reading comprehension tasks, which enhances previous attentive readers in two aspects. First, a reattention mechanism is proposed to refine current attentions by directly accessing to past attentions that are temporally memorized in a multi-round alignment architecture, so as to avoid the problems of attention redundancy and attention deficiency. Second, a new optimization approach, called dynamic-critical reinforcement learning, is introduced to extend the standard supervised method. It always encourages to predict a more acceptable answer so as to address the convergence suppression problem occurred in traditional reinforcement learning algorithms. Extensive experiments on the Stanford Question Answering Dataset (SQuAD) show that our model achieves state-of-the-art results. Meanwhile, our model outperforms previous systems by over 6% in terms of both Exact Match and F1 metrics on two adversarial SQuAD datasets.
In this paper, we propose a novel multi-task learning architecture, which incorporates recent advances in attention mechanisms. Our approach, the Multi-Task Attention Network (MTAN), consists of a single shared network containing a global feature pool, together with task-specific soft-attention modules, which are trainable in an end-to-end manner. These attention modules allow for learning of task-specific features from the global pool, whilst simultaneously allowing for features to be shared across different tasks. The architecture can be built upon any feed-forward neural network, is simple to implement, and is parameter efficient. Experiments on the CityScapes dataset show that our method outperforms several baselines in both single-task and multi-task learning, and is also more robust to the various weighting schemes in the multi-task loss function. We further explore the effectiveness of our method through experiments over a range of task complexities, and show how our method scales well with task complexity compared to baselines.