亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper introduces a new aspect for determining the rank of the unimportant filters for filter pruning on convolutional neural networks (CNNs). In the human synaptic system, there are two important channels known as excitatory and inhibitory neurotransmitters that transmit a signal from a neuron to a cell. Adopting the neuroscientific perspective, we propose a synapse-inspired filter pruning method, namely Dynamic Score (D-Score). D-Score analyzes the independent importance of positive and negative weights in the filters and ranks the independent importance by assigning scores. Filters having low overall scores, and thus low impact on the accuracy of neural networks are pruned. The experimental results on CIFAR-10 and ImageNet datasets demonstrate the effectiveness of our proposed method by reducing notable amounts of FLOPs and Params without significant Acc. Drop.

相關內容

This paper proposes a method for fast scene radiance field reconstruction with strong novel view synthesis performance and convenient scene editing functionality. The key idea is to fully utilize semantic parsing and primitive extraction for constraining and accelerating the radiance field reconstruction process. To fulfill this goal, a primitive-aware hybrid rendering strategy was proposed to enjoy the best of both volumetric and primitive rendering. We further contribute a reconstruction pipeline conducts primitive parsing and radiance field learning iteratively for each input frame which successfully fuses semantic, primitive, and radiance information into a single framework. Extensive evaluations demonstrate the fast reconstruction ability, high rendering quality, and convenient editing functionality of our method.

The field of Tiny Machine Learning (TinyML) has made substantial advancements in democratizing machine learning on low-footprint devices, such as microcontrollers. The prevalence of these miniature devices raises the question of whether aggregating their knowledge can benefit TinyML applications. Federated meta-learning is a promising answer to this question, as it addresses the scarcity of labeled data and heterogeneous data distribution across devices in the real world. However, deploying TinyML hardware faces unique resource constraints, making existing methods impractical due to energy, privacy, and communication limitations. We introduce TinyMetaFed, a model-agnostic meta-learning framework suitable for TinyML. TinyMetaFed facilitates collaborative training of a neural network initialization that can be quickly fine-tuned on new devices. It offers communication savings and privacy protection through partial local reconstruction and Top-P% selective communication, computational efficiency via online learning, and robustness to client heterogeneity through few-shot learning. The evaluations on three TinyML use cases demonstrate that TinyMetaFed can significantly reduce energy consumption and communication overhead, accelerate convergence, and stabilize the training process.

This paper presents a new decision support system offered for an in-depth analysis of semantic networks, which can provide insights for a better exploration of a brand's image and the improvement of its connectivity. In terms of network analysis, we show that this goal is achieved by solving an extended version of the Maximum Betweenness Improvement problem, which includes the possibility of considering adversarial nodes, constrained budgets, and weighted networks - where connectivity improvement can be obtained by adding links or increasing the weight of existing connections. We present this new system together with two case studies, also discussing its performance. Our tool and approach are useful both for network scholars and for supporting the strategic decision-making processes of marketing and communication managers.

The interpolative decomposition (ID) aims to construct a low-rank approximation formed by a basis consisting of row/column skeletons in the original matrix and a corresponding interpolation matrix. This work explores fast and accurate ID algorithms from five essential perspectives for empirical performance: (a) skeleton complexity that measures the minimum possible ID rank for a given low-rank approximation error, (b) asymptotic complexity in FLOPs, (c) parallelizability of the computational bottleneck as matrix-matrix multiplications, (d) error-revealing property that enables automatic rank detection for given error tolerances without prior knowledge of target ranks, (e) ID-revealing property that ensures efficient construction of the optimal interpolation matrix after selecting the skeletons. While a broad spectrum of algorithms have been developed to optimize parts of the aforementioned perspectives, practical ID algorithms proficient in all perspectives remain absent. To fill in the gap, we introduce robust blockwise random pivoting (RBRP) that is parallelizable, error-revealing, and exact-ID-revealing, with comparable skeleton and asymptotic complexities to the best existing ID algorithms in practice. Through extensive numerical experiments on various synthetic and natural datasets, we empirically demonstrate the appealing performance of RBRP from the five perspectives above, as well as the robustness of RBRP to adversarial inputs.

In recent years, research on music transcription has focused mainly on architecture design and instrument-specific data acquisition. With the lack of availability of diverse datasets, progress is often limited to solo-instrument tasks such as piano transcription. Several works have explored multi-instrument transcription as a means to bolster the performance of models on low-resource tasks, but these methods face the same data availability issues. We propose Timbre-Trap, a novel framework which unifies music transcription and audio reconstruction by exploiting the strong separability between pitch and timbre. We train a single U-Net to simultaneously estimate pitch salience and reconstruct complex spectral coefficients, selecting between either output during the decoding stage via a simple switch mechanism. In this way, the model learns to produce coefficients corresponding to timbre-less audio, which can be interpreted as pitch salience. We demonstrate that the framework leads to performance comparable to state-of-the-art instrument-agnostic transcription methods, while only requiring a small amount of annotated data.

Pilot contamination is a critical issue in distributed massive MIMO networks, where the reuse of pilot sequences due to limited availability of orthogonal pilots for channel estimation leads to performance degradation. In this work, we propose a novel distributed pilot assignment scheme to effectively mitigate the impact of pilot contamination. Our proposed scheme not only reduces signaling overhead, but it also enhances fault-tolerance. Extensive numerical simulations are conducted to evaluate the performance of the proposed scheme. Our results establish that the proposed scheme outperforms existing centralized and distributed schemes in terms of mitigating pilot contamination and significantly enhancing network throughput.

The rapid entry of machine learning approaches in our daily activities and high-stakes domains demands transparency and scrutiny of their fairness and reliability. To help gauge machine learning models' robustness, research typically focuses on the massive datasets used for their deployment, e.g., creating and maintaining documentation for understanding their origin, process of development, and ethical considerations. However, data collection for AI is still typically a one-off practice, and oftentimes datasets collected for a certain purpose or application are reused for a different problem. Additionally, dataset annotations may not be representative over time, contain ambiguous or erroneous annotations, or be unable to generalize across issues or domains. Recent research has shown these practices might lead to unfair, biased, or inaccurate outcomes. We argue that data collection for AI should be performed in a responsible manner where the quality of the data is thoroughly scrutinized and measured through a systematic set of appropriate metrics. In this paper, we propose a Responsible AI (RAI) methodology designed to guide the data collection with a set of metrics for an iterative in-depth analysis of the factors influencing the quality and reliability} of the generated data. We propose a granular set of measurements to inform on the internal reliability of a dataset and its external stability over time. We validate our approach across nine existing datasets and annotation tasks and four content modalities. This approach impacts the assessment of data robustness used for AI applied in the real world, where diversity of users and content is eminent. Furthermore, it deals with fairness and accountability aspects in data collection by providing systematic and transparent quality analysis for data collections.

This paper deals with the Multi-robot Exploration (MRE) under communication constraints problem. We propose a novel intermittent rendezvous method that allows robots to explore an unknown environment while sharing maps at rendezvous locations through agreements. In our method, robots update the agreements to spread the rendezvous locations during the exploration and prioritize exploring unknown areas near them. To generate the agreements automatically, we reduced the MRE to instances of the Job Shop Scheduling Problem (JSSP) and ensured intermittent communication through a temporal connectivity graph. We evaluate our method in simulation in various virtual urban environments and a Gazebo simulation using the Robot Operating System (ROS). Our results suggest that our method can be better than using relays or maintaining intermittent communication with a base station since we can explore faster without additional hardware to create a relay network.

Generative commonsense reasoning which aims to empower machines to generate sentences with the capacity of reasoning over a set of concepts is a critical bottleneck for text generation. Even the state-of-the-art pre-trained language generation models struggle at this task and often produce implausible and anomalous sentences. One reason is that they rarely consider incorporating the knowledge graph which can provide rich relational information among the commonsense concepts. To promote the ability of commonsense reasoning for text generation, we propose a novel knowledge graph augmented pre-trained language generation model KG-BART, which encompasses the complex relations of concepts through the knowledge graph and produces more logical and natural sentences as output. Moreover, KG-BART can leverage the graph attention to aggregate the rich concept semantics that enhances the model generalization on unseen concept sets. Experiments on benchmark CommonGen dataset verify the effectiveness of our proposed approach by comparing with several strong pre-trained language generation models, particularly KG-BART outperforms BART by 5.80, 4.60, in terms of BLEU-3, 4. Moreover, we also show that the generated context by our model can work as background scenarios to benefit downstream commonsense QA tasks.

Retrieving object instances among cluttered scenes efficiently requires compact yet comprehensive regional image representations. Intuitively, object semantics can help build the index that focuses on the most relevant regions. However, due to the lack of bounding-box datasets for objects of interest among retrieval benchmarks, most recent work on regional representations has focused on either uniform or class-agnostic region selection. In this paper, we first fill the void by providing a new dataset of landmark bounding boxes, based on the Google Landmarks dataset, that includes $94k$ images with manually curated boxes from $15k$ unique landmarks. Then, we demonstrate how a trained landmark detector, using our new dataset, can be leveraged to index image regions and improve retrieval accuracy while being much more efficient than existing regional methods. In addition, we further introduce a novel regional aggregated selective match kernel (R-ASMK) to effectively combine information from detected regions into an improved holistic image representation. R-ASMK boosts image retrieval accuracy substantially at no additional memory cost, while even outperforming systems that index image regions independently. Our complete image retrieval system improves upon the previous state-of-the-art by significant margins on the Revisited Oxford and Paris datasets. Code and data will be released.

北京阿比特科技有限公司