亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we propose a web search retrieval approach which automatically detects recency sensitive queries and increases the freshness of the ordinary document ranking by a degree proportional to the probability of the need in recent content. We propose to solve the recency ranking problem by using result diversification principles and deal with the query's non-topical ambiguity appearing when the need in recent content can be detected only with uncertainty. Our offline and online experiments with millions of queries from real search engine users demonstrate the significant increase in satisfaction of users presented with a search result generated by our approach.

相關內容

In this paper, we investigate the conditions under which link analysis algorithms prevent minority groups from reaching high ranking slots. We find that the most common link-based algorithms using centrality metrics, such as PageRank and HITS, can reproduce and even amplify bias against minority groups in networks. Yet, their behavior differs: one one hand, we empirically show that PageRank mirrors the degree distribution for most of the ranking positions and it can equalize representation of minorities among the top ranked nodes; on the other hand, we find that HITS amplifies pre-existing bias in homophilic networks through a novel theoretical analysis, supported by empirical results. We find the root cause of bias amplification in HITS to be the level of homophily present in the network, modeled through an evolving network model with two communities. We illustrate our theoretical analysis on both synthetic and real datasets and we present directions for future work.

In this paper we address the task of summarizing television shows, which touches key areas in AI research: complex reasoning, multiple modalities, and long narratives. We present a modular approach where separate components perform specialized sub-tasks which we argue affords greater flexibility compared to end-to-end methods. Our modules involve detecting scene boundaries, reordering scenes so as to minimize the number of cuts between different events, converting visual information to text, summarizing the dialogue in each scene, and fusing the scene summaries into a final summary for the entire episode. We also present a new metric, PREFS (Precision and Recall Evaluation of Summary FactS), to measure both precision and recall of generated summaries, which we decompose into atomic facts. Tested on the recently released SummScreen3D dataset Papalampidi and Lapata (2023), our method produces higher quality summaries than comparison models, as measured with ROUGE and our new fact-based metric.

In this paper, we study a facility location problem within a competitive market context, where customer demand is predicted by a random utility choice model. Unlike prior research, which primarily focuses on simple constraints such as a cardinality constraint on the number of selected locations, we introduce routing constraints that necessitate the selection of locations in a manner that guarantees the existence of a tour visiting all chosen locations while adhering to a specified tour length upper bound. Such routing constraints find crucial applications in various real-world scenarios. The problem at hand features a non-linear objective function, resulting from the utilization of random utilities, together with complex routing constraints, making it computationally challenging. To tackle this problem, we explore three types of valid cuts, namely, outer-approximation and submodular cuts to handle the nonlinear objective function, as well as sub-tour elimination cuts to address the complex routing constraints. These lead to the development of two exact solution methods: a nested cutting plane and nested branch-and-cut algorithms, where these valid cuts are iteratively added to a master problem through two nested loops. We also prove that our nested cutting plane method always converges to optimality after a finite number of iterations. Furthermore, we develop a local search-based metaheuristic tailored for solving large-scale instances and show its pros and cons compared to exact methods. Extensive experiments are conducted on problem instances of varying sizes, demonstrating that our approach excels in terms of solution quality and computation time when compared to other baseline approaches.

In this paper, we propose new techniques for solving geometric optimization problems involving interpoint distances of a point set in the plane. Given a set $P$ of $n$ points in the plane and an integer $1 \leq k \leq \binom{n}{2}$, the distance selection problem is to find the $k$-th smallest interpoint distance among all pairs of points of $P$. The previously best deterministic algorithm solves the problem in $O(n^{4/3} \log^2 n)$ time [Katz and Sharir, SIAM J. Comput. 1997 and SoCG 1993]. In this paper, we improve their algorithm to $O(n^{4/3} \log n)$ time. Using similar techniques, we also give improved algorithms on both the two-sided and the one-sided discrete Fr\'{e}chet distance with shortcuts problem for two point sets in the plane. For the two-sided problem (resp., one-sided problem), we improve the previous work [Avraham, Filtser, Kaplan, Katz, and Sharir, ACM Trans. Algorithms 2015 and SoCG 2014] by a factor of roughly $\log^2(m+n)$ (resp., $(m+n)^{\epsilon}$), where $m$ and $n$ are the sizes of the two input point sets, respectively. Other problems whose solutions can be improved by our techniques include the reverse shortest path problems for unit-disk graphs. Our techniques are quite general and we believe they will find many other applications in future.

In this letter, we proved a matrix identity of Hankel matrices that seems unrevealed before, generated from the moments of Gaussian distributions. In particular, we derived the Cholesky decompositions of the Hankel matrices in closed-forms, and showed some interesting connections between them. The results have potential applications in such as optimizing a nonlinear (NL) distortion function that maximizes the receiving gain in wireless communication systems.

In this article, we study the relationship between notions of depth for sequences, namely, Bennett's notions of strong and weak depth, and deep $\Pi^0_1$ classes, introduced by the authors and motivated by previous work of Levin. For the first main result of the study, we show that every member of a $\Pi^0_1$ class is order-deep, a property that implies strong depth. From this result, we obtain new examples of strongly deep sequences based on properties studied in computability theory and algorithmic randomness. We further show that not every strongly deep sequence is a member of a deep $\Pi^0_1$ class. For the second main result, we show that the collection of strongly deep sequences is negligible, which is equivalent to the statement that the probability of computing a strongly deep sequence with some random oracle is 0, a property also shared by every deep $\Pi^0_1$ class. Finally, we show that variants of strong depth, given in terms of a priori complexity and monotone complexity, are equivalent to weak depth.

In this study, we explore advanced strategies for enhancing software quality by detecting and refactoring data clumps, special types of code smells. Our approach transcends the capabilities of integrated development environments, utilizing a novel method that separates the detection of data clumps from the source access. This method facilitates data clump processing. We introduce a command-line interface plugin to support this novel method of processing data clumps. This research highlights the efficacy of modularized algorithms and advocates their integration into continuous workflows, promising enhanced code quality and efficient project management across various programming and integrated development environments.

Current studies on human locomotion focus mainly on solid ground walking conditions. In this paper, we present a biomechanic comparison of human walking locomotion on solid ground and sand. A novel dataset containing 3-dimensional motion and biomechanical data from 20 able-bodied adults for locomotion on solid ground and sand is collected. We present the data collection methods and report the sensor data along with the kinematic and kinetic profiles of joint biomechanics. A comprehensive analysis of human gait and joint stiffness profiles is presented. The kinematic and kinetic analysis reveals that human walking locomotion on sand shows different ground reaction forces and joint torque profiles, compared with those patterns from walking on solid ground. These gait differences reflect that humans adopt motion control strategies for yielding terrain conditions such as sand. The dataset also provides a source of locomotion data for researchers to study human activity recognition and assistive devices for walking on different terrains.

In this paper, we analyze the monotonicity of information aging in a remote estimation system, where historical observations of a Gaussian autoregressive AR(p) process are used to predict its future values. We consider two widely used loss functions in estimation: (i) logarithmic loss function for maximum likelihood estimation and (ii) quadratic loss function for MMSE estimation. The estimation error of the AR(p) process is written as a generalized conditional entropy which has closed-form expressions. By using a new information-theoretic tool called $\epsilon$-Markov chain, we can evaluate the divergence of the AR(p) process from being a Markov chain. When the divergence $\epsilon$ is large, the estimation error of the AR(p) process can be far from a non-decreasing function of the Age of Information (AoI). Conversely, for small divergence $\epsilon$, the inference error is close to a non-decreasing AoI function. Each observation is a short sequence taken from the AR(p) process. As the observation sequence length increases, the parameter $\epsilon$ progressively reduces to zero, and hence the estimation error becomes a non-decreasing AoI function. These results underscore a connection between the monotonicity of information aging and the divergence of from being a Markov chain.

In this paper, we introduce the Reinforced Mnemonic Reader for machine reading comprehension tasks, which enhances previous attentive readers in two aspects. First, a reattention mechanism is proposed to refine current attentions by directly accessing to past attentions that are temporally memorized in a multi-round alignment architecture, so as to avoid the problems of attention redundancy and attention deficiency. Second, a new optimization approach, called dynamic-critical reinforcement learning, is introduced to extend the standard supervised method. It always encourages to predict a more acceptable answer so as to address the convergence suppression problem occurred in traditional reinforcement learning algorithms. Extensive experiments on the Stanford Question Answering Dataset (SQuAD) show that our model achieves state-of-the-art results. Meanwhile, our model outperforms previous systems by over 6% in terms of both Exact Match and F1 metrics on two adversarial SQuAD datasets.

北京阿比特科技有限公司