亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper presents a new strategy to deal with the excessive diffusion that standard finite volume methods for compressible Euler equations display in the limit of low Mach number. The strategy can be understood as using centered discretizations for the acoustic part of the Euler equations and stabilizing them with a leap-frog-type ("sequential explicit") time integration, a fully explicit method. This time integration takes inspiration from time-explicit staggered grid numerical methods. In this way, advantages of staggered methods carry over to collocated methods. The paper provides a number of new collocated schemes for linear acoustic/Maxwell equations that are inspired by the Yee scheme. They are then extended to an all-speed method for the full Euler equations on Cartesian grids. By taking the opposite view and taking inspiration from collocated methods, the paper also suggests a new way of staggering the variables which increases the stability as compared to the traditional Yee scheme.

相關內容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI雜志。 Publisher:Elsevier。 SIT:

We construct a fast exact algorithm for the simulation of the first-passage time, jointly with the undershoot and overshoot, of a tempered stable subordinator over an arbitrary non-increasing absolutely continuous function. We prove that the running time of our algorithm has finite exponential moments and provide bounds on its expected running time with explicit dependence on the characteristics of the process and the initial value of the function. The expected running time grows at most cubically in the stability parameter (as it approaches either $0$ or $1$) and is linear in the tempering parameter and the initial value of the function. Numerical performance, based on the implementation in the dedicated GitHub repository, exhibits a good agreement with our theoretical bounds. We provide numerical examples to illustrate the performance of our algorithm in Monte Carlo estimation.

We derive well-posed boundary conditions for the linearized Serre equations in one spatial dimension by using the energy method. An energy stable and conservative discontinuous Galerkin spectral element method with simple upwind numerical fluxes is proposed for solving the initial boundary value problem. We derive discrete energy estimates for the numerical approximation and prove a priori error estimates in the energy norm. Detailed numerical examples are provided to verify the theoretical analysis and show convergence of numerical errors.

We present an extension of the linear sampling method for solving the sound-soft inverse acoustic scattering problem with randomly distributed point sources. The theoretical justification of our sampling method is based on the Helmholtz--Kirchhoff identity, the cross-correlation between measurements, and the volume and imaginary near-field operators, which we introduce and analyze. Implementations in MATLAB using boundary elements, the SVD, Tikhonov regularization, and Morozov's discrepancy principle are also discussed. We demonstrate the robustness and accuracy of our algorithms with several numerical experiments in two dimensions.

We analyze the preservation properties of a family of reversible splitting methods when they are applied to the numerical time integration of linear differential equations defined in the unitary group. The schemes involve complex coefficients and are conjugated to unitary transformations for sufficiently small values of the time step-size. New and efficient methods up to order six are constructed and tested on the linear Schr\"odinger equation.

The Variational Monte Carlo (VMC) is a promising approach for computing the ground state energy of many-body quantum problems and attracts more and more interests due to the development of machine learning. The recent paradigms in VMC construct neural networks as trial wave functions, sample quantum configurations using Markov chain Monte Carlo (MCMC) and train neural networks with stochastic gradient descent (SGD) method. However, the theoretical convergence of VMC is still unknown when SGD interacts with MCMC sampling given a well-designed trial wave function. Since MCMC reduces the difficulty of estimating gradients, it has inevitable bias in practice. Moreover, the local energy may be unbounded, which makes it harder to analyze the error of MCMC sampling. Therefore, we assume that the local energy is sub-exponential and use the Bernstein inequality for non-stationary Markov chains to derive error bounds of the MCMC estimator. Consequently, VMC is proven to have a first order convergence rate $O(\log K/\sqrt{n K})$ with $K$ iterations and a sample size $n$. It partially explains how MCMC influences the behavior of SGD. Furthermore, we verify the so-called correlated negative curvature condition and relate it to the zero-variance phenomena in solving eigenvalue functions. It is shown that VMC escapes from saddle points and reaches $(\epsilon,\epsilon^{1/4})$ -approximate second order stationary points or $\epsilon^{1/2}$-variance points in at least $O(\epsilon^{-11/2}\log^{2}(1/\epsilon) )$ steps with high probability. Our analysis enriches the understanding of how VMC converges efficiently and can be applied to general variational methods in physics and statistics.

The local convergence of an inexact Newton method is studied for solving generalized equations on Riemannian manifolds by using the metric regularity property which is explored as well. Under suitable conditions and without any additional geometric assumptions, local convergence results with linear and quadratic rate and a semi-local convergence result are obtained for the proposed method. Finally, the theory can be applied to problems of finding a singularity of the sum of two vector fields.

We prove a weak rate of convergence of a fully discrete scheme for stochastic Cahn--Hilliard equation with additive noise, where the spectral Galerkin method is used in space and the backward Euler method is used in time. Compared with the Allen--Cahn type stochastic partial differential equation, the error analysis here is much more sophisticated due to the presence of the unbounded operator in front of the nonlinear term. To address such issues, a novel and direct approach has been exploited which does not rely on a Kolmogorov equation but on the integration by parts formula from Malliavin calculus. To the best of our knowledge, the rates of weak convergence are revealed in the stochastic Cahn--Hilliard equation setting for the first time.

Explicit step-truncation tensor methods have recently proven successful in integrating initial value problems for high-dimensional partial differential equations (PDEs). However, the combination of non-linearity and stiffness may introduce time-step restrictions which could make explicit integration computationally infeasible. To overcome this problem, we develop a new class of implicit rank-adaptive algorithms for temporal integration of nonlinear evolution equations on tensor manifolds. These algorithms are based on performing one time step with a conventional time-stepping scheme, followed by an implicit fixed point iteration step involving a rank-adaptive truncation operation onto a tensor manifold. Implicit step truncation methods are straightforward to implement as they rely only on arithmetic operations between tensors, which can be performed by efficient and scalable parallel algorithms. Numerical applications demonstrating the effectiveness of implicit step-truncation tensor integrators are presented and discussed for the Allen-Cahn equation, the Fokker-Planck equation, and the nonlinear Schr\"odinger equation.

Switch-like responses arising from bistability have been linked to cell signaling processes and memory. Revealing the shape and properties of the set of parameters that lead to bistability is necessary to understand the underlying biological mechanisms, but is a complex mathematical problem. We present an efficient approach to determine a basic topological property of the parameter region of multistationary, namely whether it is connected or not. The connectivity of this region can be interpreted in terms of the biological mechanisms underlying bistability and the switch-like patterns that the system can create. We provide an algorithm to assert that the parameter region of multistationarity is connected, targeting reaction networks with mass-action kinetics. We show that this is the case for numerous relevant cell signaling motifs, previously described to exhibit bistability. However, we show that for a motif displaying a phosphorylation cycle with allosteric enzyme regulation, the region of multistationarity has two distinct connected components, corresponding to two different, but symmetric, biological mechanisms. The method relies on linear programming and bypasses the expensive computational cost of direct and generic approaches to study parametric polynomial systems. This characteristic makes it suitable for mass-screening of reaction networks.

The flocking motion control is concerned with managing the possible conflicts between local and team objectives of multi-agent systems. The overall control process guides the agents while monitoring the flock-cohesiveness and localization. The underlying mechanisms may degrade due to overlooking the unmodeled uncertainties associated with the flock dynamics and formation. On another side, the efficiencies of the various control designs rely on how quickly they can adapt to different dynamic situations in real-time. An online model-free policy iteration mechanism is developed here to guide a flock of agents to follow an independent command generator over a time-varying graph topology. The strength of connectivity between any two agents or the graph edge weight is decided using a position adjacency dependent function. An online recursive least squares approach is adopted to tune the guidance strategies without knowing the dynamics of the agents or those of the command generator. It is compared with another reinforcement learning approach from the literature which is based on a value iteration technique. The simulation results of the policy iteration mechanism revealed fast learning and convergence behaviors with less computational effort.

北京阿比特科技有限公司