We set up a formal framework to characterize encompassing of nonparametric models through the L2 distance. We contrast it to previous literature on the comparison of nonparametric regression models. We then develop testing procedures for the encompassing hypothesis that are fully nonparametric. Our test statistics depend on kernel regression, raising the issue of bandwidth's choice. We investigate two alternative approaches to obtain a "small bias property" for our test statistics. We show the validity of a wild bootstrap method. We empirically study the use of a data-driven bandwidth and illustrate the attractive features of our tests for small and moderate samples.
Many studies employ the analysis of time-to-event data that incorporates competing risks and right censoring. Most methods and software packages are geared towards analyzing data that comes from a continuous failure time distribution. However, failure-time data may sometimes be discrete either because time is inherently discrete or due to imprecise measurement. This paper introduces a novel estimation procedure for discrete-time survival analysis with competing events. The proposed approach offers two key advantages over existing procedures: first, it accelerates the estimation process; second, it allows for straightforward integration and application of widely used regularized regression and screening methods. We illustrate the benefits of our proposed approach by conducting a comprehensive simulation study. Additionally, we showcase the utility of our procedure by estimating a survival model for the length of stay of patients hospitalized in the intensive care unit, considering three competing events: discharge to home, transfer to another medical facility, and in-hospital death.
We study the generalization properties of unregularized gradient methods applied to separable linear classification -- a setting that has received considerable attention since the pioneering work of Soudry et al. (2018). We establish tight upper and lower (population) risk bounds for gradient descent in this setting, for any smooth loss function, expressed in terms of its tail decay rate. Our bounds take the form $\Theta(r_{\ell,T}^2 / \gamma^2 T + r_{\ell,T}^2 / \gamma^2 n)$, where $T$ is the number of gradient steps, $n$ is size of the training set, $\gamma$ is the data margin, and $r_{\ell,T}$ is a complexity term that depends on the (tail decay rate) of the loss function (and on $T$). Our upper bound matches the best known upper bounds due to Shamir (2021); Schliserman and Koren (2022), while extending their applicability to virtually any smooth loss function and relaxing technical assumptions they impose. Our risk lower bounds are the first in this context and establish the tightness of our upper bounds for any given tail decay rate and in all parameter regimes. The proof technique used to show these results is also markedly simpler compared to previous work, and is straightforward to extend to other gradient methods; we illustrate this by providing analogous results for Stochastic Gradient Descent.
Detection of slip during object grasping and manipulation plays a vital role in object handling. Existing solutions largely depend on visual information to devise a strategy for grasping. Nonetheless, in order to achieve proficiency akin to humans and achieve consistent grasping and manipulation of unfamiliar objects, the incorporation of artificial tactile sensing has become a necessity in robotic systems. In this work, we propose a novel physics-informed, data-driven method to detect slip continuously in real time. The GelSight Mini, an optical tactile sensor, is mounted on custom grippers to acquire tactile readings. Our work leverages the inhomogeneity of tactile sensor readings during slip events to develop distinctive features and formulates slip detection as a classification problem. To evaluate our approach, we test multiple data-driven models on 10 common objects under different loading conditions, textures, and materials. Our results show that the best classification algorithm achieves an average accuracy of 99\%. We demonstrate the application of this work in a dynamic robotic manipulation task in which real-time slip detection and prevention algorithm is implemented.
The Net Promoter Score is a simple measure used by several companies as indicator of customer loyalty. Studies that address the statistical properties of this measure are still scarce and none of them considered the sample size determination problem. We adopt a Bayesian approach to provide point and interval estimators for the Net Promoter Score and discuss the determination of the sample size. Computational tools were implemented to use this methodology in practice. An illustrative example with data from financial services is also presented.
While the traditional viewpoint in machine learning and statistics assumes training and testing samples come from the same population, practice belies this fiction. One strategy -- coming from robust statistics and optimization -- is thus to build a model robust to distributional perturbations. In this paper, we take a different approach to describe procedures for robust predictive inference, where a model provides uncertainty estimates on its predictions rather than point predictions. We present a method that produces prediction sets (almost exactly) giving the right coverage level for any test distribution in an $f$-divergence ball around the training population. The method, based on conformal inference, achieves (nearly) valid coverage in finite samples, under only the condition that the training data be exchangeable. An essential component of our methodology is to estimate the amount of expected future data shift and build robustness to it; we develop estimators and prove their consistency for protection and validity of uncertainty estimates under shifts. By experimenting on several large-scale benchmark datasets, including Recht et al.'s CIFAR-v4 and ImageNet-V2 datasets, we provide complementary empirical results that highlight the importance of robust predictive validity.
Although sparse training has been successfully used in various resource-limited deep learning tasks to save memory, accelerate training, and reduce inference time, the reliability of the produced sparse models remains unexplored. Previous research has shown that deep neural networks tend to be over-confident, and we find that sparse training exacerbates this problem. Therefore, calibrating the sparse models is crucial for reliable prediction and decision-making. In this paper, we propose a new sparse training method to produce sparse models with improved confidence calibration. In contrast to previous research that uses only one mask to control the sparse topology, our method utilizes two masks, including a deterministic mask and a random mask. The former efficiently searches and activates important weights by exploiting the magnitude of weights and gradients. While the latter brings better exploration and finds more appropriate weight values by random updates. Theoretically, we prove our method can be viewed as a hierarchical variational approximation of a probabilistic deep Gaussian process. Extensive experiments on multiple datasets, model architectures, and sparsities show that our method reduces ECE values by up to 47.8\% and simultaneously maintains or even improves accuracy with only a slight increase in computation and storage burden.
In this work, we describe a generic approach to show convergence with high probability for both stochastic convex and non-convex optimization with sub-Gaussian noise. In previous works for convex optimization, either the convergence is only in expectation or the bound depends on the diameter of the domain. Instead, we show high probability convergence with bounds depending on the initial distance to the optimal solution. The algorithms use step sizes analogous to the standard settings and are universal to Lipschitz functions, smooth functions, and their linear combinations. This method can be applied to the non-convex case. We demonstrate an $O((1+\sigma^{2}\log(1/\delta))/T+\sigma/\sqrt{T})$ convergence rate when the number of iterations $T$ is known and an $O((1+\sigma^{2}\log(T/\delta))/\sqrt{T})$ convergence rate when $T$ is unknown for SGD, where $1-\delta$ is the desired success probability. These bounds improve over existing bounds in the literature. Additionally, we demonstrate that our techniques can be used to obtain high probability bound for AdaGrad-Norm (Ward et al., 2019) that removes the bounded gradients assumption from previous works. Furthermore, our technique for AdaGrad-Norm extends to the standard per-coordinate AdaGrad algorithm (Duchi et al., 2011), providing the first noise-adapted high probability convergence for AdaGrad.
Many problems arising in control require the determination of a mathematical model of the application. This has often to be performed starting from input-output data, leading to a task known as system identification in the engineering literature. One emerging topic in this field is estimation of networks consisting of several interconnected dynamic systems. We consider the linear setting assuming that system outputs are the result of many correlated inputs, hence making system identification severely ill-conditioned. This is a scenario often encountered when modeling complex cybernetics systems composed by many sub-units with feedback and algebraic loops. We develop a strategy cast in a Bayesian regularization framework where any impulse response is seen as realization of a zero-mean Gaussian process. Any covariance is defined by the so called stable spline kernel which includes information on smooth exponential decay. We design a novel Markov chain Monte Carlo scheme able to reconstruct the impulse responses posterior by efficiently dealing with collinearity. Our scheme relies on a variation of the Gibbs sampling technique: beyond considering blocks forming a partition of the parameter space, some other (overlapping) blocks are also updated on the basis of the level of collinearity of the system inputs. Theoretical properties of the algorithm are studied obtaining its convergence rate. Numerical experiments are included using systems containing hundreds of impulse responses and highly correlated inputs.
Patient-reported outcome (PRO) measures are increasingly collected as a means of measuring healthcare quality and value. The capability to predict such measures enables patient-provider shared decision making and the delivery of patient-centered care. However, due to their voluntary nature, PRO measures often suffer from a high missing rate, and the missingness may depend on many patient factors. Under such a complex missing mechanism, statistical inference of the parameters in prediction models for PRO measures is challenging, especially when flexible imputation models such as machine learning or nonparametric methods are used. Specifically, the slow convergence rate of the flexible imputation model may lead to non-negligible bias, and the traditional missing propensity, capable of removing such a bias, is hard to estimate due to the complex missing mechanism. To efficiently infer the parameters of interest, we propose to use an informative surrogate that can lead to a flexible imputation model lying in a low-dimensional subspace. To remove the bias due to the flexible imputation model, we identify a class of weighting functions as alternatives to the traditional propensity score and estimate the low-dimensional one within the identified function class. Based on the estimated low-dimensional weighting function, we construct a one-step debiased estimator without using any information of the true missing propensity. We establish the asymptotic normality of the one-step debiased estimator. Simulation and an application to real-world data demonstrate the superiority of the proposed method.
Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.