亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Boolean networks are extensively applied as models of complex dynamical systems, aiming at capturing essential features related to causality and synchronicity of the state changes of components along time. Dynamics of Boolean networks result from the application of their Boolean map according to a so-called update mode, specifying the possible transitions between network configurations. In this paper, we explore update modes that possess a memory on past configurations, and provide a generic framework to define them. We show that recently introduced modes such as the most permissive and interval modes can be naturally expressed in this framework. We propose novel update modes, the history-based and trapping modes, and provide a comprehensive comparison between them. Furthermore, we show that trapping dynamics, which further generalize the most permissive mode, correspond to a rich class of networks related to transitive dynamics and encompassing commutative networks. Finally, we provide a thorough characterization of the structure of minimal and principal trapspaces, bringing a combinatorial and algebraic understanding of these objects.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

Complex networks, which are the abstractions of many real-world systems, present a persistent challenge across disciplines for people to decipher their underlying information. Recently, hyperbolic geometry of latent spaces has gained traction in network analysis, due to its ability to preserve certain local intrinsic properties of the nodes. In this study, we explore the problem from a much broader perspective: understanding the impact of nodes' global topological structures on latent space placements. Our investigations reveal a direct correlation between the topological structure of nodes and their positioning within the latent space. Building on this deep and strong connection between node distance and network topology, we propose a novel embedding framework called Topology-encoded Latent Hyperbolic Geometry (TopoLa) for analyzing complex networks. With the encoded topological information in the latent space, TopoLa is capable of enhancing both conventional and low-rank networks, using the singular value gap to clarify the mathematical principles behind this enhancement. Meanwhile, we show that the equipped TopoLa distance can also help augment pivotal deep learning models encompassing knowledge distillation and contrastive learning.

With the recent popularity of neural networks comes the need for efficient serving of inference workloads. A neural network inference workload can be represented as a computational graph with nodes as operators transforming multidimensional tensors. The tensors can be transposed and/or tiled in a combinatorially large number of ways, some configurations leading to accelerated inference. We propose TGraph, a neural graph architecture that allows screening for fast configurations of the target computational graph, thus representing an artificial intelligence (AI) tensor compiler in contrast to the traditional heuristics-based compilers. The proposed solution improves mean Kendall's $\tau$ across layout collections of TpuGraphs from 29.8% of the reliable baseline to 67.4% of TGraph. We estimate the potential CO$_2$ emission reduction associated with our work to be equivalent to over 50% of the total household emissions in the areas hosting AI-oriented data centers.

Continuous p-dispersion problems with and without boundary constraints are NP-hard optimization problems with numerous real-world applications, notably in facility location and circle packing, which are widely studied in mathematics and operations research. In this work, we concentrate on general cases with a non-convex multiply-connected region that are rarely studied in the literature due to their intractability and the absence of an efficient optimization model. Using the penalty function approach, we design a unified and almost everywhere differentiable optimization model for these complex problems and propose a tabu search-based global optimization (TSGO) algorithm for solving them. Computational results over a variety of benchmark instances show that the proposed model works very well, allowing popular local optimization methods (e.g., the quasi-Newton methods and the conjugate gradient methods) to reach high-precision solutions due to the differentiability of the model. These results further demonstrate that the proposed TSGO algorithm is very efficient and significantly outperforms several popular global optimization algorithms in the literature, improving the best-known solutions for several existing instances in a short computational time. Experimental analyses are conducted to show the influence of several key ingredients of the algorithm on computational performance.

Analysis of geospatial data has traditionally been model-based, with a mean model, customarily specified as a linear regression on the covariates, and a covariance model, encoding the spatial dependence. We relax the strong assumption of linearity and propose embedding neural networks directly within the traditional geostatistical models to accommodate non-linear mean functions while retaining all other advantages including use of Gaussian Processes to explicitly model the spatial covariance, enabling inference on the covariate effect through the mean and on the spatial dependence through the covariance, and offering predictions at new locations via kriging. We propose NN-GLS, a new neural network estimation algorithm for the non-linear mean in GP models that explicitly accounts for the spatial covariance through generalized least squares (GLS), the same loss used in the linear case. We show that NN-GLS admits a representation as a special type of graph neural network (GNN). This connection facilitates use of standard neural network computational techniques for irregular geospatial data, enabling novel and scalable mini-batching, backpropagation, and kriging schemes. Theoretically, we show that NN-GLS will be consistent for irregularly observed spatially correlated data processes. We also provide a finite sample concentration rate, which quantifies the need to accurately model the spatial covariance in neural networks for dependent data. To our knowledge, these are the first large-sample results for any neural network algorithm for irregular spatial data. We demonstrate the methodology through simulated and real datasets.

We consider the problem of constructing reduced models for large scale systems with poles in general domains in the complex plane (as opposed to, e.g., the open left-half plane or the open unit disk). Our goal is to design a model reduction scheme, building upon theoretically established methodologies, yet encompassing this new class of models. To this aim, we develop a balanced truncation framework through conformal maps to handle poles in general domains. The major difference from classical balanced truncation resides in the formulation of the Gramians. We show that these new Gramians can still be computed by solving modified Lyapunov equations for specific conformal maps. A numerical algorithm to perform balanced truncation with conformal maps is developed and is tested on three numerical examples, namely a heat model, the Schr\"odinger equation, and the undamped linear wave equation, the latter two having spectra on the imaginary axis.

Probabilistic graphical models are widely used to model complex systems under uncertainty. Traditionally, Gaussian directed graphical models are applied for analysis of large networks with continuous variables as they can provide conditional and marginal distributions in closed form simplifying the inferential task. The Gaussianity and linearity assumptions are often adequate, yet can lead to poor performance when dealing with some practical applications. In this paper, we model each variable in graph G as a polynomial regression of its parents to capture complex relationships between individual variables and with a utility function of polynomial form. We develop a message-passing algorithm to propagate information throughout the network solely using moments which enables the expected utility scores to be calculated exactly. Our propagation method scales up well and enables to perform inference in terms of a finite number of expectations. We illustrate how the proposed methodology works with examples and in an application to decision problems in energy planning and for real-time clinical decision support.

Architectural simulators hold a vital role in RISC-V research, providing a crucial platform for workload evaluation without the need for costly physical prototypes. They serve as a dynamic environment for exploring innovative architectural concepts, enabling swift iteration and thorough analysis of performance metrics. As deep learning algorithms become increasingly pervasive, it is essential to benchmark new architectures with machine learning workloads. The diverse computational kernels used in deep learning algorithms highlight the necessity for a comprehensive compilation toolchain to map to target hardware platforms. This study evaluates the performance of a wide array of machine learning workloads on RISC-V architectures using gem5, an open-source architectural simulator. Leveraging an open-source compilation toolchain based on Multi-Level Intermediate Representation (MLIR), the research presents benchmarking results specifically focused on deep learning inference workloads. Additionally, the study sheds light on current limitations of gem5 when simulating RISC-V architectures, offering insights for future development and refinement.

In modern data analysis, it is common to use machine learning methods to predict outcomes on unlabeled datasets and then use these pseudo-outcomes in subsequent statistical inference. Inference in this setting is often called post-prediction inference. We propose a novel assumption-lean framework for statistical inference under post-prediction setting, called Prediction De-Correlated Inference (PDC). Our approach is safe, in the sense that PDC can automatically adapt to any black-box machine-learning model and consistently outperform the supervised counterparts. The PDC framework also offers easy extensibility for accommodating multiple predictive models. Both numerical results and real-world data analysis demonstrate the superiority of PDC over the state-of-the-art methods.

The remarkable practical success of deep learning has revealed some major surprises from a theoretical perspective. In particular, simple gradient methods easily find near-optimal solutions to non-convex optimization problems, and despite giving a near-perfect fit to training data without any explicit effort to control model complexity, these methods exhibit excellent predictive accuracy. We conjecture that specific principles underlie these phenomena: that overparametrization allows gradient methods to find interpolating solutions, that these methods implicitly impose regularization, and that overparametrization leads to benign overfitting. We survey recent theoretical progress that provides examples illustrating these principles in simpler settings. We first review classical uniform convergence results and why they fall short of explaining aspects of the behavior of deep learning methods. We give examples of implicit regularization in simple settings, where gradient methods lead to minimal norm functions that perfectly fit the training data. Then we review prediction methods that exhibit benign overfitting, focusing on regression problems with quadratic loss. For these methods, we can decompose the prediction rule into a simple component that is useful for prediction and a spiky component that is useful for overfitting but, in a favorable setting, does not harm prediction accuracy. We focus specifically on the linear regime for neural networks, where the network can be approximated by a linear model. In this regime, we demonstrate the success of gradient flow, and we consider benign overfitting with two-layer networks, giving an exact asymptotic analysis that precisely demonstrates the impact of overparametrization. We conclude by highlighting the key challenges that arise in extending these insights to realistic deep learning settings.

Graph representation learning for hypergraphs can be used to extract patterns among higher-order interactions that are critically important in many real world problems. Current approaches designed for hypergraphs, however, are unable to handle different types of hypergraphs and are typically not generic for various learning tasks. Indeed, models that can predict variable-sized heterogeneous hyperedges have not been available. Here we develop a new self-attention based graph neural network called Hyper-SAGNN applicable to homogeneous and heterogeneous hypergraphs with variable hyperedge sizes. We perform extensive evaluations on multiple datasets, including four benchmark network datasets and two single-cell Hi-C datasets in genomics. We demonstrate that Hyper-SAGNN significantly outperforms the state-of-the-art methods on traditional tasks while also achieving great performance on a new task called outsider identification. Hyper-SAGNN will be useful for graph representation learning to uncover complex higher-order interactions in different applications.

北京阿比特科技有限公司