Multi-agent systems require effective coordination between groups and individuals to achieve common goals. However, current multi-agent reinforcement learning (MARL) methods primarily focus on improving individual policies and do not adequately address group-level policies, which leads to weak cooperation. To address this issue, we propose a novel Consensus-oriented Strategy (CoS) that emphasizes group and individual policies simultaneously. Specifically, CoS comprises two main components: (a) the vector quantized group consensus module, which extracts discrete latent embeddings that represent the stable and discriminative group consensus, and (b) the group consensus-oriented strategy, which integrates the group policy using a hypernet and the individual policies using the group consensus, thereby promoting coordination at both the group and individual levels. Through empirical experiments on cooperative navigation tasks with both discrete and continuous spaces, as well as Google research football, we demonstrate that CoS outperforms state-of-the-art MARL algorithms and achieves better collaboration, thus providing a promising solution for achieving effective coordination in multi-agent systems.
We propose DISC-LawLLM, an intelligent legal system utilizing large language models (LLMs) to provide a wide range of legal services. We adopt legal syllogism prompting strategies to construct supervised fine-tuning datasets in the Chinese Judicial domain and fine-tune LLMs with legal reasoning capability. We augment LLMs with a retrieval module to enhance models' ability to access and utilize external legal knowledge. A comprehensive legal benchmark, DISC-Law-Eval, is presented to evaluate intelligent legal systems from both objective and subjective dimensions. Quantitative and qualitative results on DISC-Law-Eval demonstrate the effectiveness of our system in serving various users across diverse legal scenarios. The detailed resources are available at //github.com/FudanDISC/DISC-LawLLM.
Explainable recommender systems (RS) have traditionally followed a one-size-fits-all approach, delivering the same explanation level of detail to each user, without considering their individual needs and goals. Further, explanations in RS have so far been presented mostly in a static and non-interactive manner. To fill these research gaps, we aim in this paper to adopt a user-centered, interactive explanation model that provides explanations with different levels of detail and empowers users to interact with, control, and personalize the explanations based on their needs and preferences. We followed a user-centered approach to design interactive explanations with three levels of detail (basic, intermediate, and advanced) and implemented them in the transparent Recommendation and Interest Modeling Application (RIMA). We conducted a qualitative user study (N=14) to investigate the impact of providing interactive explanations with varying level of details on the users' perception of the explainable RS. Our study showed qualitative evidence that fostering interaction and giving users control in deciding which explanation they would like to see can meet the demands of users with different needs, preferences, and goals, and consequently can have positive effects on different crucial aspects in explainable recommendation, including transparency, trust, satisfaction, and user experience.
Instance segmentation has witnessed promising advancements through deep neural network-based algorithms. However, these models often exhibit incorrect predictions with unwarranted confidence levels. Consequently, evaluating prediction uncertainty becomes critical for informed decision-making. Existing methods primarily focus on quantifying uncertainty in classification or regression tasks, lacking emphasis on instance segmentation. Our research addresses the challenge of estimating spatial certainty associated with the location of instances with star-convex shapes. Two distinct clustering approaches are evaluated which compute spatial and fractional certainty per instance employing samples by the Monte-Carlo Dropout or Deep Ensemble technique. Our study demonstrates that combining spatial and fractional certainty scores yields improved calibrated estimation over individual certainty scores. Notably, our experimental results show that the Deep Ensemble technique alongside our novel radial clustering approach proves to be an effective strategy. Our findings emphasize the significance of evaluating the calibration of estimated certainties for model reliability and decision-making.
The communities of blockchains and distributed ledgers have been stirred up by the introduction of zero-knowledge proofs (ZKPs). Originally designed to solve privacy issues, ZKPs have now evolved into an effective remedy for scalability concerns and are applied in Zcash (internet money like Bitcoin). To enable ZKPs, Rank-1 Constraint Systems (R1CS) offer a verifier for bi-linear equations. To accurately and efficiently represent R1CS, several language tools like Circom, Noir, and Snarky have been proposed to automate the compilation of advanced programs into R1CS. However, due to the flexible nature of R1CS representation, there can be significant differences in the compiled R1CS forms generated from circuit language programs with the same underlying semantics. To address this issue, this paper uses a data-flow-based R1CS paradigm algorithm, which produces a standardized format for different R1CS instances with identical semantics. By using the normalized R1CS format circuits, the complexity of circuits' verification can be reduced. In addition, this paper presents an R1CS normalization algorithm benchmark, and our experimental evaluation demonstrates the effectiveness and correctness of our methods.
The main objective of this research paper is to investigate the local convergence characteristics of Model-agnostic Meta-learning (MAML) when applied to linear system quadratic optimal control (LQR). MAML and its variations have become popular techniques for quickly adapting to new tasks by leveraging previous learning knowledge in areas like regression, classification, and reinforcement learning. However, its theoretical guarantees remain unknown due to non-convexity and its structure, making it even more challenging to ensure stability in the dynamic system setting. This study focuses on exploring MAML in the LQR setting, providing its local convergence guarantees while maintaining the stability of the dynamical system. The paper also presents simple numerical results to demonstrate the convergence properties of MAML in LQR tasks.
In neural network training, RMSProp and ADAM remain widely favoured optimization algorithms. One of the keys to their performance lies in selecting the correct step size, which can significantly influence their effectiveness. It is worth noting that these algorithms performance can vary considerably, depending on the chosen step sizes. Additionally, questions about their theoretical convergence properties continue to be a subject of interest. In this paper, we theoretically analyze a constant stepsize version of ADAM in the non-convex setting. We show sufficient conditions for the stepsize to achieve almost sure asymptotic convergence of the gradients to zero with minimal assumptions. We also provide runtime bounds for deterministic ADAM to reach approximate criticality when working with smooth, non-convex functions.
Due to the imbalanced nature of networked observational data, the causal effect predictions for some individuals can severely violate the positivity/overlap assumption, rendering unreliable estimations. Nevertheless, this potential risk of individual-level treatment effect estimation on networked data has been largely under-explored. To create a more trustworthy causal effect estimator, we propose the uncertainty-aware graph deep kernel learning (GraphDKL) framework with Lipschitz constraint to model the prediction uncertainty with Gaussian process and identify unreliable estimations. To the best of our knowledge, GraphDKL is the first framework to tackle the violation of positivity assumption when performing causal effect estimation with graphs. With extensive experiments, we demonstrate the superiority of our proposed method in uncertainty-aware causal effect estimation on networked data.
Transformer-based pretrained language models (T-PTLMs) have achieved great success in almost every NLP task. The evolution of these models started with GPT and BERT. These models are built on the top of transformers, self-supervised learning and transfer learning. Transformed-based PTLMs learn universal language representations from large volumes of text data using self-supervised learning and transfer this knowledge to downstream tasks. These models provide good background knowledge to downstream tasks which avoids training of downstream models from scratch. In this comprehensive survey paper, we initially give a brief overview of self-supervised learning. Next, we explain various core concepts like pretraining, pretraining methods, pretraining tasks, embeddings and downstream adaptation methods. Next, we present a new taxonomy of T-PTLMs and then give brief overview of various benchmarks including both intrinsic and extrinsic. We present a summary of various useful libraries to work with T-PTLMs. Finally, we highlight some of the future research directions which will further improve these models. We strongly believe that this comprehensive survey paper will serve as a good reference to learn the core concepts as well as to stay updated with the recent happenings in T-PTLMs.
This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.
Most object recognition approaches predominantly focus on learning discriminative visual patterns while overlooking the holistic object structure. Though important, structure modeling usually requires significant manual annotations and therefore is labor-intensive. In this paper, we propose to "look into object" (explicitly yet intrinsically model the object structure) through incorporating self-supervisions into the traditional framework. We show the recognition backbone can be substantially enhanced for more robust representation learning, without any cost of extra annotation and inference speed. Specifically, we first propose an object-extent learning module for localizing the object according to the visual patterns shared among the instances in the same category. We then design a spatial context learning module for modeling the internal structures of the object, through predicting the relative positions within the extent. These two modules can be easily plugged into any backbone networks during training and detached at inference time. Extensive experiments show that our look-into-object approach (LIO) achieves large performance gain on a number of benchmarks, including generic object recognition (ImageNet) and fine-grained object recognition tasks (CUB, Cars, Aircraft). We also show that this learning paradigm is highly generalizable to other tasks such as object detection and segmentation (MS COCO). Project page: //github.com/JDAI-CV/LIO.