Existing methods for Visual Information Extraction (VIE) from form-like documents typically fragment the process into separate subtasks, such as key information extraction, key-value pair extraction, and choice group extraction. However, these approaches often overlook the hierarchical structure of form documents, including hierarchical key-value pairs and hierarchical choice groups. To address these limitations, we present a new perspective, reframing VIE as a relation prediction problem and unifying labels of different tasks into a single label space. This unified approach allows for the definition of various relation types and effectively tackles hierarchical relationships in form-like documents. In line with this perspective, we present UniVIE, a unified model that addresses the VIE problem comprehensively. UniVIE functions using a coarse-to-fine strategy. It initially generates tree proposals through a tree proposal network, which are subsequently refined into hierarchical trees by a relation decoder module. To enhance the relation prediction capabilities of UniVIE, we incorporate two novel tree constraints into the relation decoder: a tree attention mask and a tree level embedding. Extensive experimental evaluations on both our in-house dataset HierForms and a publicly available dataset SIBR, substantiate that our method achieves state-of-the-art results, underscoring the effectiveness and potential of our unified approach in advancing the field of VIE.
The rapid advancement of large language models (LLMs) has led to a new era marked by the development of autonomous applications in real-world scenarios, which drives innovation in creating advanced web agents. Existing web agents typically only handle one input modality and are evaluated only in simplified web simulators or static web snapshots, greatly limiting their applicability in real-world scenarios. To bridge this gap, we introduce WebVoyager, an innovative Large Multimodal Model (LMM) powered web agent that can complete user instructions end-to-end by interacting with real-world websites. Moreover, we establish a new benchmark by compiling real-world tasks from 15 popular websites and introduce an automatic evaluation protocol leveraging multimodal understanding abilities of GPT-4V to evaluate open-ended web agents. We show that WebVoyager achieves a 59.1% task success rate on our benchmark, significantly surpassing the performance of both GPT-4 (All Tools) and the WebVoyager (text-only) setups, underscoring the exceptional capability of WebVoyager. The proposed automatic evaluation metric achieves 85.3% agreement with human judgment, indicating its effectiveness in providing reliable and accurate assessments of web agents.
The automated assembly of complex products requires a system that can automatically plan a physically feasible sequence of actions for assembling many parts together. In this paper, we present ASAP, a physics-based planning approach for automatically generating such a sequence for general-shaped assemblies. ASAP accounts for gravity to design a sequence where each sub-assembly is physically stable with a limited number of parts being held and a support surface. We apply efficient tree search algorithms to reduce the combinatorial complexity of determining such an assembly sequence. The search can be guided by either geometric heuristics or graph neural networks trained on data with simulation labels. Finally, we show the superior performance of ASAP at generating physically realistic assembly sequence plans on a large dataset of hundreds of complex product assemblies. We further demonstrate the applicability of ASAP on both simulation and real-world robotic setups. Project website: asap.csail.mit.edu
Large language models (LLMs) demonstrate their promise in tackling complicated practical challenges by combining action-based policies with chain of thought (CoT) reasoning. Having high-quality prompts on hand, however, is vital to the framework's effectiveness. Currently, these prompts are handcrafted utilising extensive human labor, resulting in CoT policies that frequently fail to generalise. Human intervention is also required to develop grounding functions that ensure low-level controllers appropriately process CoT reasoning. In this paper, we propose a comprehensive training framework for complex task-solving, incorporating human prior knowledge into the learning of action policies. To that purpose, we offer a new leader-follower bilevel framework that is capable of learning to ask relevant questions (prompts) and subsequently undertaking reasoning to guide the learning of actions. The prompt policy is employed to make introspective revisions based on historical findings, leading the CoT process to consider the anticipated goals and generate outputs that lead to decisive, high-performing actions. The action policy subsequently learns to comprehend and integrate the CoT outputs to take actions. Our empirical data reveal that our framework outperforms leading methods in $5$ decision-making tasks such as Overcooked and FourRoom.
Despite achieving rapid developments and with widespread applications, Large Vision-Language Models (LVLMs) confront a serious challenge of being prone to generating hallucinations. An over-reliance on linguistic priors has been identified as a key factor leading to these hallucinations. In this paper, we propose to alleviate this problem by introducing a novel image-biased decoding (IBD) technique. Our method derives the next-token probability distribution by contrasting predictions from a conventional LVLM with those of an image-biased LVLM, thereby amplifying the correct information highly correlated with image content while mitigating the hallucinatory errors caused by excessive dependence on text. We further conduct a comprehensive statistical analysis to validate the reliability of our method, and design an adaptive adjustment strategy to achieve robust and flexible handling under varying conditions. Experimental results across multiple evaluation metrics verify that our method, despite not requiring additional training data and only with a minimal increase in model parameters, can significantly reduce hallucinations in LVLMs and enhance the truthfulness of the generated response.
This paper proposes a method for Acoustic Constrained Segmentation (ACS) in audio recordings of vehicles driven through a production test track, delimiting the boundaries of surface types in the track. ACS is a variant of classical acoustic segmentation where the sequence of labels is known, contiguous and invariable, which is especially useful in this work as the test track has a standard configuration of surface types. The proposed ConvDTW-ACS method utilizes a Convolutional Neural Network for classifying overlapping image chunks extracted from the full audio spectrogram. Then, our custom Dynamic Time Warping algorithm aligns the sequence of predicted probabilities to the sequence of surface types in the track, from which timestamps of the surface type boundaries can be extracted. The method was evaluated on a real-world dataset collected from the Ford Manufacturing Plant in Valencia (Spain), achieving a mean error of 166 milliseconds when delimiting, within the audio, the boundaries of the surfaces in the track. The results demonstrate the effectiveness of the proposed method in accurately segmenting different surface types, which could enable the development of more specialized AI systems to improve the quality inspection process.
Self-attention and position embedding are two key modules in transformer-based Large Language Models (LLMs). However, the potential relationship between them is far from well studied, especially for long context window extending. In fact, anomalous behaviors harming long context extrapolation exist between Rotary Position Embedding (RoPE) and vanilla self-attention unveiled by our work. To address this issue, we propose a novel attention mechanism, CoCA (Collinear Constrained Attention). Specifically, we enforce a collinear constraint between $Q$ and $K$ to seamlessly integrate RoPE and self-attention. While only adding minimal computational and spatial complexity, this integration significantly enhances long context window extrapolation ability. We provide an optimized implementation, making it a drop-in replacement for any existing transformer-based models. Extensive experiments show that CoCA performs extraordinarily well in extending context windows. A CoCA-based GPT model, trained with a context length of 512, can seamlessly extend the context window up to 32K (60$\times$), without any fine-tuning. Additionally, by dropping CoCA in LLaMA-7B, we achieve extrapolation up to 32K within only 2K training length. Our code is publicly available at: //github.com/codefuse-ai/Collinear-Constrained-Attention
Recent developments in Distributed Ledger Technology (DLT), including Blockchain offer new opportunities in the manufacturing domain, by providing mechanisms to automate trust services (digital identity, trusted interactions, and auditable transactions) and when combined with other advanced digital technologies (e.g. machine learning) can provide a secure backbone for trusted data flows between independent entities. This paper presents an DLT-based architectural pattern and technology solution known as SmartQC that aims to provide an extensible and flexible approach to integrating DLT technology into existing workflows and processes. SmartQC offers an opportunity to make processes more time efficient, reliable, and robust by providing two key features i) data integrity through immutable ledgers and ii) automation of business workflows leveraging smart contracts. The paper will present the system architecture, extensible data model and the application of SmartQC in the context of example smart manufacturing applications.
Creating presentation materials requires complex multimodal reasoning skills to summarize key concepts and arrange them in a logical and visually pleasing manner. Can machines learn to emulate this laborious process? We present a novel task and approach for document-to-slide generation. Solving this involves document summarization, image and text retrieval, slide structure and layout prediction to arrange key elements in a form suitable for presentation. We propose a hierarchical sequence-to-sequence approach to tackle our task in an end-to-end manner. Our approach exploits the inherent structures within documents and slides and incorporates paraphrasing and layout prediction modules to generate slides. To help accelerate research in this domain, we release a dataset about 6K paired documents and slide decks used in our experiments. We show that our approach outperforms strong baselines and produces slides with rich content and aligned imagery.
Most existing event extraction (EE) methods merely extract event arguments within the sentence scope. However, such sentence-level EE methods struggle to handle soaring amounts of documents from emerging applications, such as finance, legislation, health, etc., where event arguments always scatter across different sentences, and even multiple such event mentions frequently co-exist in the same document. To address these challenges, we propose a novel end-to-end model, Doc2EDAG, which can generate an entity-based directed acyclic graph to fulfill the document-level EE (DEE) effectively. Moreover, we reformalize a DEE task with the no-trigger-words design to ease the document-level event labeling. To demonstrate the effectiveness of Doc2EDAG, we build a large-scale real-world dataset consisting of Chinese financial announcements with the challenges mentioned above. Extensive experiments with comprehensive analyses illustrate the superiority of Doc2EDAG over state-of-the-art methods. Data and codes can be found at //github.com/dolphin-zs/Doc2EDAG.
State-of-the-art Convolutional Neural Network (CNN) benefits a lot from multi-task learning (MTL), which learns multiple related tasks simultaneously to obtain shared or mutually related representations for different tasks. The most widely-used MTL CNN structure is based on an empirical or heuristic split on a specific layer (e.g., the last convolutional layer) to minimize different task-specific losses. However, this heuristic sharing/splitting strategy may be harmful to the final performance of one or multiple tasks. In this paper, we propose a novel CNN structure for MTL, which enables automatic feature fusing at every layer. Specifically, we first concatenate features from different tasks according to their channel dimension, and then formulate the feature fusing problem as discriminative dimensionality reduction. We show that this discriminative dimensionality reduction can be done by 1x1 Convolution, Batch Normalization, and Weight Decay in one CNN, which we refer to as Neural Discriminative Dimensionality Reduction (NDDR). We perform ablation analysis in details for different configurations in training the network. The experiments carried out on different network structures and different task sets demonstrate the promising performance and desirable generalizability of our proposed method.