亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Approximate Bayesian Computation (ABC) enables statistical inference in complex models whose likelihoods are difficult to calculate but easy to simulate from. ABC constructs a kernel-type approximation to the posterior distribution through an accept/reject mechanism which compares summary statistics of real and simulated data. To obviate the need for summary statistics, we directly compare empirical distributions with a Kullback-Leibler (KL) divergence estimator obtained via classification. In particular, we blend flexible machine learning classifiers within ABC to automate fake/real data comparisons. We consider the traditional accept/reject kernel as well as an exponential weighting scheme which does not require the ABC acceptance threshold. Our theoretical results show that the rate at which our ABC posterior distributions concentrate around the true parameter depends on the estimation error of the classifier. We derive limiting posterior shape results and find that, with a properly scaled exponential kernel, asymptotic normality holds. We demonstrate the usefulness of our approach on simulated examples as well as real data in the context of stock volatility estimation.

相關內容

Reference priors are theoretically attractive for the analysis of geostatistical data since they enable automatic Bayesian analysis and have desirable Bayesian and frequentist properties. But their use is hindered by computational hurdles that make their application in practice challenging. In this work, we derive a new class of default priors that approximate reference priors for the parameters of some Gaussian random fields. It is based on an approximation to the integrated likelihood of the covariance parameters derived from the spectral approximation of stationary random fields. This prior depends on the structure of the mean function and the spectral density of the model evaluated at a set of spectral points associated with an auxiliary regular grid. In addition to preserving the desirable Bayesian and frequentist properties, these approximate reference priors are more stable, and their computations are much less onerous than those of exact reference priors. Unlike exact reference priors, the marginal approximate reference prior of correlation parameter is always proper, regardless of the mean function or the smoothness of the correlation function. This property has important consequences for covariance model selection. An illustration comparing default Bayesian analyses is provided with a data set of lead pollution in Galicia, Spain.

Recently, many studies have shed light on the high adaptivity of deep neural network methods in nonparametric regression models, and their superior performance has been established for various function classes. Motivated by this development, we study a deep neural network method to estimate the drift coefficient of a multi-dimensional diffusion process from discrete observations. We derive generalization error bounds for least squares estimates based on deep neural networks and show that they achieve the minimax rate of convergence up to a logarithmic factor when the drift function has a compositional structure.

Despite the introduction of vaccines, Coronavirus disease (COVID-19) remains a worldwide dilemma, continuously developing new variants such as Delta and the recent Omicron. The current standard for testing is through polymerase chain reaction (PCR). However, PCRs can be expensive, slow, and/or inaccessible to many people. X-rays on the other hand have been readily used since the early 20th century and are relatively cheaper, quicker to obtain, and typically covered by health insurance. With a careful selection of model, hyperparameters, and augmentations, we show that it is possible to develop models with 83% accuracy in binary classification and 64% in multi-class for detecting COVID-19 infections from chest x-rays.

Motivated by applications in reinforcement learning (RL), we study a nonlinear stochastic approximation (SA) algorithm under Markovian noise, and establish its finite-sample convergence bounds under various stepsizes. Specifically, we show that when using constant stepsize (i.e., $\alpha_k\equiv \alpha$), the algorithm achieves exponential fast convergence to a neighborhood (with radius $O(\alpha\log(1/\alpha))$) around the desired limit point. When using diminishing stepsizes with appropriate decay rate, the algorithm converges with rate $O(\log(k)/k)$. Our proof is based on Lyapunov drift arguments, and to handle the Markovian noise, we exploit the fast mixing of the underlying Markov chain. To demonstrate the generality of our theoretical results on Markovian SA, we use it to derive the finite-sample bounds of the popular $Q$-learning with linear function approximation algorithm, under a condition on the behavior policy. Importantly, we do not need to make the assumption that the samples are i.i.d., and do not require an artificial projection step in the algorithm to maintain the boundedness of the iterates. Numerical simulations corroborate our theoretical results.

We study the optimal sample complexity of learning a Gaussian directed acyclic graph (DAG) from observational data. Our main result establishes the minimax optimal sample complexity for learning the structure of a linear Gaussian DAG model with equal variances to be $n\asymp q\log(d/q)$, where $q$ is the maximum number of parents and $d$ is the number of nodes. We further make comparisons with the classical problem of learning (undirected) Gaussian graphical models, showing that under the equal variance assumption, these two problems share the same optimal sample complexity. In other words, at least for Gaussian models with equal error variances, learning a directed graphical model is not more difficult than learning an undirected graphical model. Our results also extend to more general identification assumptions as well as subgaussian errors.

As an example of the nonlinear Fokker-Planck equation, the mean field Langevin dynamics attracts attention due to its connection to (noisy) gradient descent on infinitely wide neural networks in the mean field regime, and hence the convergence property of the dynamics is of great theoretical interest. In this work, we give a simple and self-contained convergence rate analysis of the mean field Langevin dynamics with respect to the (regularized) objective function in both continuous and discrete time settings. The key ingredient of our proof is a proximal Gibbs distribution $p_q$ associated with the dynamics, which, in combination of techniques in [Vempala and Wibisono (2019)], allows us to develop a convergence theory parallel to classical results in convex optimization. Furthermore, we reveal that $p_q$ connects to the duality gap in the empirical risk minimization setting, which enables efficient empirical evaluation of the algorithm convergence.

We consider quantile estimation in a semi-supervised setting, characterized by two available data sets: (i) a small or moderate sized labeled data set containing observations for a response and a set of possibly high dimensional covariates, and (ii) a much larger unlabeled data set where only the covariates are observed. We propose a family of semi-supervised estimators for the response quantile(s) based on the two data sets, to improve the estimation accuracy compared to the supervised estimator, i.e., the sample quantile from the labeled data. These estimators use a flexible imputation strategy applied to the estimating equation along with a debiasing step that allows for full robustness against misspecification of the imputation model. Further, a one-step update strategy is adopted to enable easy implementation of our method and handle the complexity from the non-linear nature of the quantile estimating equation. Under mild assumptions, our estimators are fully robust to the choice of the nuisance imputation model, in the sense of always maintaining root-n consistency and asymptotic normality, while having improved efficiency relative to the supervised estimator. They also attain semi-parametric optimality if the relation between the response and the covariates is correctly specified via the imputation model. As an illustration of estimating the nuisance imputation function, we consider kernel smoothing type estimators on lower dimensional and possibly estimated transformations of the high dimensional covariates, and we establish novel results on their uniform convergence rates in high dimensions, involving responses indexed by a function class and usage of dimension reduction techniques. These results may be of independent interest. Numerical results on both simulated and real data confirm our semi-supervised approach's improved performance, in terms of both estimation and inference.

The Bayesian paradigm has the potential to solve core issues of deep neural networks such as poor calibration and data inefficiency. Alas, scaling Bayesian inference to large weight spaces often requires restrictive approximations. In this work, we show that it suffices to perform inference over a small subset of model weights in order to obtain accurate predictive posteriors. The other weights are kept as point estimates. This subnetwork inference framework enables us to use expressive, otherwise intractable, posterior approximations over such subsets. In particular, we implement subnetwork linearized Laplace: We first obtain a MAP estimate of all weights and then infer a full-covariance Gaussian posterior over a subnetwork. We propose a subnetwork selection strategy that aims to maximally preserve the model's predictive uncertainty. Empirically, our approach is effective compared to ensembles and less expressive posterior approximations over full networks.

Stochastic gradient Markov chain Monte Carlo (SGMCMC) has become a popular method for scalable Bayesian inference. These methods are based on sampling a discrete-time approximation to a continuous time process, such as the Langevin diffusion. When applied to distributions defined on a constrained space, such as the simplex, the time-discretisation error can dominate when we are near the boundary of the space. We demonstrate that while current SGMCMC methods for the simplex perform well in certain cases, they struggle with sparse simplex spaces; when many of the components are close to zero. However, most popular large-scale applications of Bayesian inference on simplex spaces, such as network or topic models, are sparse. We argue that this poor performance is due to the biases of SGMCMC caused by the discretization error. To get around this, we propose the stochastic CIR process, which removes all discretization error and we prove that samples from the stochastic CIR process are asymptotically unbiased. Use of the stochastic CIR process within a SGMCMC algorithm is shown to give substantially better performance for a topic model and a Dirichlet process mixture model than existing SGMCMC approaches.

We develop an approach to risk minimization and stochastic optimization that provides a convex surrogate for variance, allowing near-optimal and computationally efficient trading between approximation and estimation error. Our approach builds off of techniques for distributionally robust optimization and Owen's empirical likelihood, and we provide a number of finite-sample and asymptotic results characterizing the theoretical performance of the estimator. In particular, we show that our procedure comes with certificates of optimality, achieving (in some scenarios) faster rates of convergence than empirical risk minimization by virtue of automatically balancing bias and variance. We give corroborating empirical evidence showing that in practice, the estimator indeed trades between variance and absolute performance on a training sample, improving out-of-sample (test) performance over standard empirical risk minimization for a number of classification problems.

北京阿比特科技有限公司