亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The ability of large language models (LLMs) to follow natural language instructions with human-level fluency suggests many opportunities in healthcare to reduce administrative burden and improve quality of care. However, evaluating LLMs on realistic text generation tasks for healthcare remains challenging. Existing question answering datasets for electronic health record (EHR) data fail to capture the complexity of information needs and documentation burdens experienced by clinicians. To address these challenges, we introduce MedAlign, a benchmark dataset of 983 natural language instructions for EHR data. MedAlign is curated by 15 clinicians (7 specialities), includes clinician-written reference responses for 303 instructions, and provides 276 longitudinal EHRs for grounding instruction-response pairs. We used MedAlign to evaluate 6 general domain LLMs, having clinicians rank the accuracy and quality of each LLM response. We found high error rates, ranging from 35% (GPT-4) to 68% (MPT-7B-Instruct), and an 8.3% drop in accuracy moving from 32k to 2k context lengths for GPT-4. Finally, we report correlations between clinician rankings and automated natural language generation metrics as a way to rank LLMs without human review. We make MedAlign available under a research data use agreement to enable LLM evaluations on tasks aligned with clinician needs and preferences.

相關內容

大語言模型是基于海量文本數據訓練的深度學習模型。它不僅能夠生成自然語言文本,還能夠深入理解文本含義,處理各種自然語言任務,如文本摘要、問答、翻譯等。2023年,大語言模型及其在人工智能領域的應用已成為全球科技研究的熱點,其在規模上的增長尤為引人注目,參數量已從最初的十幾億躍升到如今的一萬億。參數量的提升使得模型能夠更加精細地捕捉人類語言微妙之處,更加深入地理解人類語言的復雜性。在過去的一年里,大語言模型在吸納新知識、分解復雜任務以及圖文對齊等多方面都有顯著提升。隨著技術的不斷成熟,它將不斷拓展其應用范圍,為人類提供更加智能化和個性化的服務,進一步改善人們的生活和生產方式。

In recent years, pre-trained large language models (LLMs) have demonstrated remarkable efficiency in achieving an inference-time few-shot learning capability known as in-context learning. However, existing literature has highlighted the sensitivity of this capability to the selection of few-shot demonstrations. Current understandings of the underlying mechanisms by which this capability arises from regular language model pretraining objectives remain disconnected from the real-world LLMs. This study aims to examine the in-context learning phenomenon through a Bayesian lens, viewing real-world LLMs as latent variable models. On this premise, we propose an algorithm to select optimal demonstrations from a set of annotated data with a small LM, and then directly generalize the selected demonstrations to larger LMs. We demonstrate significant improvement over baselines, averaged over eight GPT models on eight real-world text classification datasets. We also demonstrate the real-world usefulness of our algorithm on GSM8K, a math word problem dataset. Our empirical findings support our hypothesis that LLMs implicitly infer a latent variable containing task information.

Cloud-based large language models (LLMs) such as ChatGPT have increasingly become integral to daily operations, serving as vital tools across various applications. While these models offer substantial benefits in terms of accessibility and functionality, they also introduce significant privacy concerns: the transmission and storage of user data in cloud infrastructures pose substantial risks of data breaches and unauthorized access to sensitive information; even if the transmission and storage of data is encrypted, the LLM service provider itself still knows the real contents of the data, preventing individuals or entities from confidently using such LLM services. To address these concerns, this paper proposes a simple yet effective mechanism EmojiCrypt to protect user privacy. It uses Emoji to encrypt the user inputs before sending them to LLM, effectively rendering them indecipherable to human or LLM's examination while retaining the original intent of the prompt, thus ensuring the model's performance remains unaffected. We conduct experiments on three tasks, personalized recommendation, sentiment analysis, and tabular data analysis. Experiment results reveal that EmojiCrypt can encrypt personal information within prompts in such a manner that not only prevents the discernment of sensitive data by humans or LLM itself, but also maintains or even improves the precision without further tuning, achieving comparable or even better task accuracy than directly prompting the LLM without prompt encryption. These results highlight the practicality of adopting encryption measures that safeguard user privacy without compromising the functional integrity and performance of LLMs. Code and dataset are available at //github.com/agiresearch/EmojiCrypt.

The robustness of large language models (LLMs) becomes increasingly important as their use rapidly grows in a wide range of domains. Retrieval-Augmented Generation (RAG) is considered as a means to improve the trustworthiness of text generation from LLMs. However, how the outputs from RAG-based LLMs are affected by slightly different inputs is not well studied. In this work, we find that the insertion of even a short prefix to the prompt leads to the generation of outputs far away from factually correct answers. We systematically evaluate the effect of such prefixes on RAG by introducing a novel optimization technique called Gradient Guided Prompt Perturbation (GGPP). GGPP achieves a high success rate in steering outputs of RAG-based LLMs to targeted wrong answers. It can also cope with instructions in the prompts requesting to ignore irrelevant context. We also exploit LLMs' neuron activation difference between prompts with and without GGPP perturbations to give a method that improves the robustness of RAG-based LLMs through a highly effective detector trained on neuron activation triggered by GGPP generated prompts. Our evaluation on open-sourced LLMs demonstrates the effectiveness of our methods.

Trained on massive publicly available data, large language models (LLMs) have demonstrated tremendous success across various fields. While more data contributes to better performance, a disconcerting reality is that high-quality public data will be exhausted in a few years. In this paper, we offer a potential next step for contemporary LLMs: collaborative and privacy-preserving LLM training on the underutilized distributed private data via federated learning (FL), where multiple data owners collaboratively train a shared model without transmitting raw data. To achieve this, we build a concise, integrated, and research-friendly framework/codebase, named OpenFedLLM. It covers federated instruction tuning for enhancing instruction-following capability, federated value alignment for aligning with human values, and 7 representative FL algorithms. Besides, OpenFedLLM supports training on diverse domains, where we cover 8 training datasets; and provides comprehensive evaluations, where we cover 30+ evaluation metrics. Through extensive experiments, we observe that all FL algorithms outperform local training on training LLMs, demonstrating a clear performance improvement across a variety of settings. Notably, in a financial benchmark, Llama2-7B fine-tuned by applying any FL algorithm can outperform GPT-4 by a significant margin while the model obtained through individual training cannot, demonstrating strong motivation for clients to participate in FL. The code is available at //github.com/rui-ye/OpenFedLLM.

Large language models have become the cornerstone of natural language processing, but their use comes with substantial costs in terms of compute and memory resources. Sparsification provides a solution to alleviate these resource constraints, and recent works have shown that trained models can be sparsified post-hoc. Existing sparsification techniques face challenges as they need additional data structures and offer constrained speedup with current hardware. In this paper we present SliceGPT, a new post-training sparsification scheme which replaces each weight matrix with a smaller (dense) matrix, reducing the embedding dimension of the network. Through extensive experimentation, we show that SliceGPT can remove up to 25% of the model parameters (including embeddings) for LLAMA2-70B, OPT 66B and Phi-2 models while maintaining 99%, 99% and 90% zero-shot task performance of the dense model respectively. Our sliced models run on fewer GPUs and run faster without any additional code optimization: on 24GB consumer GPUs we reduce the total compute for inference on LLAMA2-70B to 64% of that of the dense model; on 40GB A100 GPUs we reduce it to 66%. We offer a new insight, computational invariance in transformer networks, which enables SliceGPT and we hope it will inspire and enable future avenues to reduce memory and computation demands for pre-trained models. Code is available at: //github.com/microsoft/TransformerCompression

Large language models (LLMs) exhibit advanced reasoning skills, enabling robots to comprehend natural language instructions and strategically plan high-level actions through proper grounding. However, LLM hallucination may result in robots confidently executing plans that are misaligned with user goals or, in extreme cases, unsafe. Additionally, inherent ambiguity in natural language instructions can induce task uncertainty, particularly in situations where multiple valid options exist. To address this issue, LLMs must identify such uncertainty and proactively seek clarification. This paper explores the concept of introspective planning as a systematic method for guiding LLMs in forming uncertainty--aware plans for robotic task execution without the need for fine-tuning. We investigate uncertainty quantification in task-level robot planning and demonstrate that introspection significantly improves both success rates and safety compared to state-of-the-art LLM-based planning approaches. Furthermore, we assess the effectiveness of introspective planning in conjunction with conformal prediction, revealing that this combination yields tighter confidence bounds, thereby maintaining statistical success guarantees with fewer superfluous user clarification queries.

By combining natural language understanding and the generation capabilities and breadth of knowledge of large language models with image perception, recent large vision language models (LVLMs) have shown unprecedented reasoning capabilities in the real world. However, the generated text often suffers from inaccurate grounding in the visual input, resulting in errors such as hallucinating nonexistent scene elements, missing significant parts of the scene, and inferring incorrect attributes and relationships between objects. To address these issues, we introduce a novel framework, ViGoR (Visual Grounding Through Fine-Grained Reward Modeling) that utilizes fine-grained reward modeling to significantly enhance the visual grounding of LVLMs over pre-trained baselines. This improvement is efficiently achieved using much cheaper human evaluations instead of full supervisions, as well as automated methods. We show the effectiveness of our approach through numerous metrics on several benchmarks. Additionally, we construct a comprehensive and challenging dataset specifically designed to validate the visual grounding capabilities of LVLMs. Finally, we plan to release our human annotation comprising approximately 16,000 images and generated text pairs with fine-grained evaluations to contribute to related research in the community.

The emergence of large language models (LLMs) has substantially influenced natural language processing, demonstrating exceptional results across various tasks. In this study, we employ ``Introspective Tips" to facilitate LLMs in self-optimizing their decision-making. By introspectively examining trajectories, LLM refines its policy by generating succinct and valuable tips. Our method enhances the agent's performance in both few-shot and zero-shot learning situations by considering three essential scenarios: learning from the agent's past experiences, integrating expert demonstrations, and generalizing across diverse games. Importantly, we accomplish these improvements without fine-tuning the LLM parameters; rather, we adjust the prompt to generalize insights from the three aforementioned situations. Our framework not only supports but also emphasizes the advantage of employing LLM in in-contxt decision-making. Experiments involving over 100 games in TextWorld illustrate the superior performance of our approach.

Pre-trained language models (PLMs) have been the de facto paradigm for most natural language processing (NLP) tasks. This also benefits biomedical domain: researchers from informatics, medicine, and computer science (CS) communities propose various PLMs trained on biomedical datasets, e.g., biomedical text, electronic health records, protein, and DNA sequences for various biomedical tasks. However, the cross-discipline characteristics of biomedical PLMs hinder their spreading among communities; some existing works are isolated from each other without comprehensive comparison and discussions. It expects a survey that not only systematically reviews recent advances of biomedical PLMs and their applications but also standardizes terminology and benchmarks. In this paper, we summarize the recent progress of pre-trained language models in the biomedical domain and their applications in biomedical downstream tasks. Particularly, we discuss the motivations and propose a taxonomy of existing biomedical PLMs. Their applications in biomedical downstream tasks are exhaustively discussed. At last, we illustrate various limitations and future trends, which we hope can provide inspiration for the future research of the research community.

In order to answer natural language questions over knowledge graphs, most processing pipelines involve entity and relation linking. Traditionally, entity linking and relation linking has been performed either as dependent sequential tasks or independent parallel tasks. In this paper, we propose a framework called "EARL", which performs entity linking and relation linking as a joint single task. EARL uses a graph connection based solution to the problem. We model the linking task as an instance of the Generalised Travelling Salesman Problem (GTSP) and use GTSP approximate algorithm solutions. We later develop EARL which uses a pair-wise graph-distance based solution to the problem.The system determines the best semantic connection between all keywords of the question by referring to a knowledge graph. This is achieved by exploiting the "connection density" between entity candidates and relation candidates. The "connection density" based solution performs at par with the approximate GTSP solution.We have empirically evaluated the framework on a dataset with 5000 questions. Our system surpasses state-of-the-art scores for entity linking task by reporting an accuracy of 0.65 to 0.40 from the next best entity linker.

北京阿比特科技有限公司