亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Hypercontractivity is one of the most powerful tools in Boolean function analysis. Originally studied over the discrete hypercube, recent years have seen increasing interest in extensions to settings like the $p$-biased cube, slice, or Grassmannian, where variants of hypercontractivity have found a number of breakthrough applications including the resolution of Khot's 2-2 Games Conjecture (Khot, Minzer, Safra FOCS 2018). In this work, we develop a new theory of hypercontractivity on high dimensional expanders (HDX), an important class of expanding complexes that has recently seen similarly impressive applications in both coding theory and approximate sampling. Our results lead to a new understanding of the structure of Boolean functions on HDX, including a tight analog of the KKL Theorem and a new characterization of non-expanding sets. Unlike previous settings satisfying hypercontractivity, HDX can be asymmetric, sparse, and very far from products, which makes the application of traditional proof techniques challenging. We handle these barriers with the introduction of two new tools of independent interest: a new explicit combinatorial Fourier basis for HDX that behaves well under restriction, and a new local-to-global method for analyzing higher moments. Interestingly, unlike analogous second moment methods that apply equally across all types of expanding complexes, our tools rely inherently on simplicial structure. This suggests a new distinction among high dimensional expanders based upon their behavior beyond the second moment.

相關內容

In recent work (Maierhofer & Huybrechs, 2022, Adv. Comput. Math.), the authors showed that least-squares oversampling can improve the convergence properties of collocation methods for boundary integral equations involving operators of certain pseudo-differential form. The underlying principle is that the discrete method approximates a Bubnov$-$Galerkin method in a suitable sense. In the present work, we extend this analysis to the case when the integral operator is perturbed by a compact operator $\mathcal{K}$ which is continuous as a map on Sobolev spaces on the boundary, $\mathcal{K}:H^{p}\rightarrow H^{q}$ for all $p,q\in\mathbb{R}$. This study is complicated by the fact that both the test and trial functions in the discrete Bubnov-Galerkin orthogonality conditions are modified over the unperturbed setting. Our analysis guarantees that previous results concerning optimal convergence rates and sufficient rates of oversampling are preserved in the more general case. Indeed, for the first time, this analysis provides a complete explanation of the advantages of least-squares oversampled collocation for boundary integral formulations of the Laplace equation on arbitrary smooth Jordan curves in 2D. Our theoretical results are shown to be in very good agreement with numerical experiments.

Performance assessment and optimization for networks jointly performing caching, computing, and communication (3C) has recently drawn significant attention because many emerging applications require 3C functionality. However, studies in the literature mostly focus on the particular algorithms and setups of such networks, while their theoretical understanding and characterization has been less explored. To fill this gap, this paper conducts the asymptotic (scaling-law) analysis for the delay-outage tradeoff of noise-limited wireless edge networks with joint 3C. In particular, assuming the user requests for different tasks following a Zipf distribution, we derive the analytical expression for the optimal caching policy. Based on this, we next derive the closed-form expression for the optimum outage probability as a function of delay and other network parameters for the case that the Zipf parameter is smaller than 1. Then, for the case that the Zipf parameter is larger than 1, we derive the closed-form expressions for upper and lower bounds of the optimum outage probability. We provide insights and interpretations based on the derived expressions. Computer simulations validate our analytical results and insights.

Hypergraphs offer flexible and robust data representations for many applications, but methods that work directly on hypergraphs are not readily available and tend to be prohibitively expensive. Much of the current analysis of hypergraphs relies on first performing a graph expansion -- either based on the nodes (clique expansion), or on the edges (line graph) -- and then running standard graph analytics on the resulting representative graph. However, this approach suffers from massive space complexity and high computational cost with increasing hypergraph size. Here, we present efficient, parallel algorithms to accelerate and reduce the memory footprint of higher-order graph expansions of hypergraphs. Our results focus on the edge-based $s$-line graph expansion, but the methods we develop work for higher-order clique expansions as well. To the best of our knowledge, ours is the first framework to enable hypergraph spectral analysis of a large dataset on a single shared-memory machine. Our methods enable the analysis of datasets from many domains that previous graph-expansion-based models are unable to provide. The proposed $s$-line graph computation algorithms are orders of magnitude faster than state-of-the-art sparse general matrix-matrix multiplication methods, and obtain approximately $5-31{\times}$ speedup over a prior state-of-the-art heuristic-based algorithm for $s$-line graph computation.

Reference priors are theoretically attractive for the analysis of geostatistical data since they enable automatic Bayesian analysis and have desirable Bayesian and frequentist properties. But their use is hindered by computational hurdles that make their application in practice challenging. In this work, we derive a new class of default priors that approximate reference priors for the parameters of some Gaussian random fields. It is based on an approximation to the integrated likelihood of the covariance parameters derived from the spectral approximation of stationary random fields. This prior depends on the structure of the mean function and the spectral density of the model evaluated at a set of spectral points associated with an auxiliary regular grid. In addition to preserving the desirable Bayesian and frequentist properties, these approximate reference priors are more stable, and their computations are much less onerous than those of exact reference priors. Unlike exact reference priors, the marginal approximate reference prior of correlation parameter is always proper, regardless of the mean function or the smoothness of the correlation function. This property has important consequences for covariance model selection. An illustration comparing default Bayesian analyses is provided with a data set of lead pollution in Galicia, Spain.

We initiate the study of Boolean function analysis on high-dimensional expanders. We give a random-walk based definition of high-dimensional expansion, which coincides with the earlier definition in terms of two-sided link expanders. Using this definition, we describe an analog of the Fourier expansion and the Fourier levels of the Boolean hypercube for simplicial complexes. Our analog is a decomposition into approximate eigenspaces of random walks associated with the simplicial complexes. Our random-walk definition and the decomposition have the additional advantage that they extend to the more general setting of posets, encompassing both high-dimensional expanders and the Grassmann poset, which appears in recent work on the unique games conjecture. We then use this decomposition to extend the Friedgut-Kalai-Naor theorem to high-dimensional expanders. Our results demonstrate that a constant-degree high-dimensional expander can sometimes serve as a sparse model for the Boolean slice or hypercube, and quite possibly additional results from Boolean function analysis can be carried over to this sparse model. Therefore, this model can be viewed as a derandomization of the Boolean slice, containing only $|X(k-1)|=O(n)$ points in contrast to $\binom{n}{k}$ points in the $k$-slice (which consists of all $n$-bit strings with exactly $k$ ones).

We introduce an algebraic multiscale method for two--dimensional problems. The method uses the generalized multiscale finite element method based on the quadrilateral nonconforming finite element spaces. Differently from the one--dimensional algebraic multiscale method, we apply the dimension reduction techniques to construct multiscale basis functions. Also moment functions are considered to impose continuity between local basis functions. Some representative numerical results are presented.

In this paper, we propose a variationally consistent technique for decreasing the maximum eigenfrequencies of structural dynamics related finite element formulations. Our approach is based on adding a symmetric positive-definite term to the mass matrix that follows from the integral of the traction jump across element boundaries. The added term is weighted by a small factor, for which we derive a suitable, and simple, element-local parameter choice. For linear problems, we show that our mass-scaling method produces no adverse effects in terms of spatial accuracy and orders of convergence. We illustrate these properties in one, two and three spatial dimension, for quadrilateral elements and triangular elements, and for up to fourth order polynomials basis functions. To extend the method to non-linear problems, we introduce a linear approximation and show that a sizeable increase in critical time-step size can be achieved while only causing minor (even beneficial) influences on the dynamic response.

Interpretation of Deep Neural Networks (DNNs) training as an optimal control problem with nonlinear dynamical systems has received considerable attention recently, yet the algorithmic development remains relatively limited. In this work, we make an attempt along this line by reformulating the training procedure from the trajectory optimization perspective. We first show that most widely-used algorithms for training DNNs can be linked to the Differential Dynamic Programming (DDP), a celebrated second-order trajectory optimization algorithm rooted in the Approximate Dynamic Programming. In this vein, we propose a new variant of DDP that can accept batch optimization for training feedforward networks, while integrating naturally with the recent progress in curvature approximation. The resulting algorithm features layer-wise feedback policies which improve convergence rate and reduce sensitivity to hyper-parameter over existing methods. We show that the algorithm is competitive against state-ofthe-art first and second order methods. Our work opens up new avenues for principled algorithmic design built upon the optimal control theory.

Matter evolved under influence of gravity from minuscule density fluctuations. Non-perturbative structure formed hierarchically over all scales, and developed non-Gaussian features in the Universe, known as the Cosmic Web. To fully understand the structure formation of the Universe is one of the holy grails of modern astrophysics. Astrophysicists survey large volumes of the Universe and employ a large ensemble of computer simulations to compare with the observed data in order to extract the full information of our own Universe. However, to evolve trillions of galaxies over billions of years even with the simplest physics is a daunting task. We build a deep neural network, the Deep Density Displacement Model (hereafter D$^3$M), to predict the non-linear structure formation of the Universe from simple linear perturbation theory. Our extensive analysis, demonstrates that D$^3$M outperforms the second order perturbation theory (hereafter 2LPT), the commonly used fast approximate simulation method, in point-wise comparison, 2-point correlation, and 3-point correlation. We also show that D$^3$M is able to accurately extrapolate far beyond its training data, and predict structure formation for significantly different cosmological parameters. Our study proves, for the first time, that deep learning is a practical and accurate alternative to approximate simulations of the gravitational structure formation of the Universe.

In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.

北京阿比特科技有限公司