亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Cross-domain Sequential Recommendation (CSR) which leverages user sequence data from multiple domains has received extensive attention in recent years. However, the existing CSR methods require sharing origin user data across domains, which violates the General Data Protection Regulation (GDPR). Thus, it is necessary to combine federated learning (FL) and CSR to fully utilize knowledge from different domains while preserving data privacy. Nonetheless, the sequence feature heterogeneity across different domains significantly impacts the overall performance of FL. In this paper, we propose FedDCSR, a novel federated cross-domain sequential recommendation framework via disentangled representation learning. Specifically, to address the sequence feature heterogeneity across domains, we introduce an approach called inter-intra domain sequence representation disentanglement (SRD) to disentangle the user sequence features into domain-shared and domain-exclusive features. In addition, we design an intra domain contrastive infomax (CIM) strategy to learn richer domain-exclusive features of users by performing data augmentation on user sequences. Extensive experiments on three real-world scenarios demonstrate that FedDCSR achieves significant improvements over existing baselines.

相關內容

This work considers an asynchronous $\textsf{K}_a$-active-user unsourced multiple access channel (AUMAC) with the worst-case asynchronicity. The transmitted messages must be decoded within $n$ channel uses, while some codewords are not completely received due to asynchronicities. We consider a constraint of the largest allowed delay of the transmission. The AUMAC lacks the permutation-invariant property of the synchronous UMAC since different permutations of the same codewords with a fixed asynchronicity are distinguishable. Hence, the analyses require calculating all $2^{\textsf{K}_a}-1$ combinations of erroneously decoded messages. Moreover, transmitters cannot adapt the corresponding codebooks according to asynchronicity due to a lack of information on asynchronicities. To overcome this challenge, a uniform bound of the per-user probability of error (PUPE) is derived by investigating the worst-case of the asynchronous patterns with the delay constraint. Numerical results show the trade-off between the energy-per-bit and the number of active users for different delay constraints. In addition, although the asynchronous transmission reduces interference, the required energy-per-bit increases as the receiver decodes with incompletely received codewords, compared to the synchronous case.

Simulating user interactions enables a more user-oriented evaluation of information retrieval (IR) systems. While user simulations are cost-efficient and reproducible, many approaches often lack fidelity regarding real user behavior. Most notably, current user models neglect the user's context, which is the primary driver of perceived relevance and the interactions with the search results. To this end, this work introduces the simulation of context-driven query reformulations. The proposed query generation methods build upon recent Large Language Model (LLM) approaches and consider the user's context throughout the simulation of a search session. Compared to simple context-free query generation approaches, these methods show better effectiveness and allow the simulation of more efficient IR sessions. Similarly, our evaluations consider more interaction context than current session-based measures and reveal interesting complementary insights in addition to the established evaluation protocols. We conclude with directions for future work and provide an entirely open experimental setup.

Conversational recommender systems (CRS) aim to recommend relevant items to users by eliciting user preference through natural language conversation. Prior work often utilizes external knowledge graphs for items' semantic information, a language model for dialogue generation, and a recommendation module for ranking relevant items. This combination of multiple components suffers from a cumbersome training process, and leads to semantic misalignment issues between dialogue generation and item recommendation. In this paper, we represent items in natural language and formulate CRS as a natural language processing task. Accordingly, we leverage the power of pre-trained language models to encode items, understand user intent via conversation, perform item recommendation through semantic matching, and generate dialogues. As a unified model, our PECRS (Parameter-Efficient CRS), can be optimized in a single stage, without relying on non-textual metadata such as a knowledge graph. Experiments on two benchmark CRS datasets, ReDial and INSPIRED, demonstrate the effectiveness of PECRS on recommendation and conversation. Our code is available at: //github.com/Ravoxsg/efficient_unified_crs.

Blockchains deploy Transaction Fee Mechanisms (TFMs) to determine which user transactions to include in blocks and determine their payments (i.e., transaction fees). Increasing demand and scarce block resources have led to high user transaction fees. As these blockchains are a public resource, it may be preferable to reduce these transaction fees. To this end, we introduce Transaction Fee Redistribution Mechanisms (TFRMs) -- redistributing VCG payments collected from such TFM as rebates to minimize transaction fees. Classic redistribution mechanisms (RMs) achieve this while ensuring Allocative Efficiency (AE) and User Incentive Compatibility (UIC). Our first result shows the non-triviality of applying RM in TFMs. More concretely, we prove that it is impossible to reduce transaction fees when (i) transactions that are not confirmed do not receive rebates and (ii) the miner can strategically manipulate the mechanism. Driven by this, we propose \emph{Robust} TFRM (\textsf{R-TFRM}): a mechanism that compromises on an honest miner's individual rationality to guarantee strictly positive rebates to the users. We then introduce \emph{robust} and \emph{rational} TFRM (\textsf{R}$^2$\textsf{-TFRM}) that uses trusted on-chain randomness that additionally guarantees miner's individual rationality (in expectation) and strictly positive rebates. Our results show that TFRMs provide a promising new direction for reducing transaction fees in public blockchains.

Cross-domain recommendation (CDR) has been proven as a promising way to tackle the user cold-start problem, which aims to make recommendations for users in the target domain by transferring the user preference derived from the source domain. Traditional CDR studies follow the embedding and mapping (EMCDR) paradigm, which transfers user representations from the source to target domain by learning a user-shared mapping function, neglecting the user-specific preference. Recent CDR studies attempt to learn user-specific mapping functions in meta-learning paradigm, which regards each user's CDR as an individual task, but neglects the preference correlations among users, limiting the beneficial information for user representations. Moreover, both of the paradigms neglect the explicit user-item interactions from both domains during the mapping process. To address the above issues, this paper proposes a novel CDR framework with neural process (NP), termed as CDRNP. Particularly, it develops the meta-learning paradigm to leverage user-specific preference, and further introduces a stochastic process by NP to capture the preference correlations among the overlapping and cold-start users, thus generating more powerful mapping functions by mapping the user-specific preference and common preference correlations to a predictive probability distribution. In addition, we also introduce a preference remainer to enhance the common preference from the overlapping users, and finally devises an adaptive conditional decoder with preference modulation to make prediction for cold-start users with items in the target domain. Experimental results demonstrate that CDRNP outperforms previous SOTA methods in three real-world CDR scenarios.

Ranking items regarding individual user interests is a core technique of multiple downstream tasks such as recommender systems. Learning such a personalized ranker typically relies on the implicit feedback from users' past click-through behaviors. However, collected feedback is biased toward previously highly-ranked items and directly learning from it would result in a "rich-get-richer" phenomenon. In this paper, we propose a simple yet sufficient unbiased learning-to-rank paradigm named InfoRank that aims to simultaneously address both position and popularity biases. We begin by consolidating the impacts of those biases into a single observation factor, thereby providing a unified approach to addressing bias-related issues. Subsequently, we minimize the mutual information between the observation estimation and the relevance estimation conditioned on the input features. By doing so, our relevance estimation can be proved to be free of bias. To implement InfoRank, we first incorporate an attention mechanism to capture latent correlations within user-item features, thereby generating estimations of observation and relevance. We then introduce a regularization term, grounded in conditional mutual information, to promote conditional independence between relevance estimation and observation estimation. Experimental evaluations conducted across three extensive recommendation and search datasets reveal that InfoRank learns more precise and unbiased ranking strategies.

Sequential recommendation (SR) is to accurately recommend a list of items for a user based on her current accessed ones. While new-coming users continuously arrive in the real world, one crucial task is to have inductive SR that can produce embeddings of users and items without re-training. Given user-item interactions can be extremely sparse, another critical task is to have transferable SR that can transfer the knowledge derived from one domain with rich data to another domain. In this work, we aim to present the holistic SR that simultaneously accommodates conventional, inductive, and transferable settings. We propose a novel deep learning-based model, Relational Temporal Attentive Graph Neural Networks (RetaGNN), for holistic SR. The main idea of RetaGNN is three-fold. First, to have inductive and transferable capabilities, we train a relational attentive GNN on the local subgraph extracted from a user-item pair, in which the learnable weight matrices are on various relations among users, items, and attributes, rather than nodes or edges. Second, long-term and short-term temporal patterns of user preferences are encoded by a proposed sequential self-attention mechanism. Third, a relation-aware regularization term is devised for better training of RetaGNN. Experiments conducted on MovieLens, Instagram, and Book-Crossing datasets exhibit that RetaGNN can outperform state-of-the-art methods under conventional, inductive, and transferable settings. The derived attention weights also bring model explainability.

Conventional unsupervised multi-source domain adaptation (UMDA) methods assume all source domains can be accessed directly. This neglects the privacy-preserving policy, that is, all the data and computations must be kept decentralized. There exists three problems in this scenario: (1) Minimizing the domain distance requires the pairwise calculation of the data from source and target domains, which is not accessible. (2) The communication cost and privacy security limit the application of UMDA methods (e.g., the domain adversarial training). (3) Since users have no authority to check the data quality, the irrelevant or malicious source domains are more likely to appear, which causes negative transfer. In this study, we propose a privacy-preserving UMDA paradigm named Knowledge Distillation based Decentralized Domain Adaptation (KD3A), which performs domain adaptation through the knowledge distillation on models from different source domains. KD3A solves the above problems with three components: (1) A multi-source knowledge distillation method named Knowledge Vote to learn high-quality domain consensus knowledge. (2) A dynamic weighting strategy named Consensus Focus to identify both the malicious and irrelevant domains. (3) A decentralized optimization strategy for domain distance named BatchNorm MMD. The extensive experiments on DomainNet demonstrate that KD3A is robust to the negative transfer and brings a 100x reduction of communication cost compared with other decentralized UMDA methods. Moreover, our KD3A significantly outperforms state-of-the-art UMDA approaches.

Multi-paragraph reasoning is indispensable for open-domain question answering (OpenQA), which receives less attention in the current OpenQA systems. In this work, we propose a knowledge-enhanced graph neural network (KGNN), which performs reasoning over multiple paragraphs with entities. To explicitly capture the entities' relatedness, KGNN utilizes relational facts in knowledge graph to build the entity graph. The experimental results show that KGNN outperforms in both distractor and full wiki settings than baselines methods on HotpotQA dataset. And our further analysis illustrates KGNN is effective and robust with more retrieved paragraphs.

User engagement is a critical metric for evaluating the quality of open-domain dialogue systems. Prior work has focused on conversation-level engagement by using heuristically constructed features such as the number of turns and the total time of the conversation. In this paper, we investigate the possibility and efficacy of estimating utterance-level engagement and define a novel metric, {\em predictive engagement}, for automatic evaluation of open-domain dialogue systems. Our experiments demonstrate that (1) human annotators have high agreement on assessing utterance-level engagement scores; (2) conversation-level engagement scores can be predicted from properly aggregated utterance-level engagement scores. Furthermore, we show that the utterance-level engagement scores can be learned from data. These scores can improve automatic evaluation metrics for open-domain dialogue systems, as shown by correlation with human judgements. This suggests that predictive engagement can be used as a real-time feedback for training better dialogue models.

北京阿比特科技有限公司