Retrieval-Augmented Generation (RAG) has been shown to enhance the factual accuracy of Large Language Models (LLMs), but existing methods often suffer from limited reasoning capabilities in effectively using the retrieved evidence, particularly when using open-source LLMs. To mitigate this gap, we introduce a novel framework, Open-RAG, designed to enhance reasoning capabilities in RAG with open-source LLMs. Our framework transforms an arbitrary dense LLM into a parameter-efficient sparse mixture of experts (MoE) model capable of handling complex reasoning tasks, including both single- and multi-hop queries. Open-RAG uniquely trains the model to navigate challenging distractors that appear relevant but are misleading. As a result, Open-RAG leverages latent learning, dynamically selecting relevant experts and integrating external knowledge effectively for more accurate and contextually relevant responses. In addition, we propose a hybrid adaptive retrieval method to determine retrieval necessity and balance the trade-off between performance gain and inference speed. Experimental results show that the Llama2-7B-based Open-RAG outperforms state-of-the-art LLMs and RAG models such as ChatGPT, Self-RAG, and Command R+ in various knowledge-intensive tasks. We open-source our code and models at //openragmoe.github.io/
Code Large Language Models (Code LLMs), such as Code llama and DeepSeek-Coder, have demonstrated exceptional performance in the code generation tasks. However, most existing models focus on the abilities of generating correct code, but often struggle with bug repair. We introduce a suit of methods to enhance LLM's SQL bug-fixing abilities. The methods are mainly consisted of two parts: A Progressive Dataset Construction (PDC) from scratch and Dynamic Mask Supervised Fine-tuning (DM-SFT). PDC proposes two data expansion methods from the perspectives of breadth first and depth first respectively. DM-SFT introduces an efficient bug-fixing supervised learning approach, which effectively reduce the total training steps and mitigate the "disorientation" in SQL code bug-fixing training. In our evaluation, the code LLM models trained with two methods have exceeds all current best performing model which size is much larger.
The instrumental variables (IVs) method is a leading empirical strategy for causal inference. Finding IVs is a heuristic and creative process, and justifying its validity--especially exclusion restrictions--is largely rhetorical. We propose using large language models (LLMs) to search for new IVs through narratives and counterfactual reasoning, similar to how a human researcher would. The stark difference, however, is that LLMs can dramatically accelerate this process and explore an extremely large search space. We demonstrate how to construct prompts to search for potentially valid IVs. We contend that multi-step and role-playing prompting strategies are effective for simulating the endogenous decision-making processes of economic agents and for navigating language models through the realm of real-world scenarios. We apply our method to three well-known examples in economics: returns to schooling, supply and demand, and peer effects. We then extend our strategy to finding (i) control variables in regression and difference-in-differences and (ii) running variables in regression discontinuity designs.
Audio-Visual Question Answering (AVQA) is a challenging task that involves answering questions based on both auditory and visual information in videos. A significant challenge is interpreting complex multi-modal scenes, which include both visual objects and sound sources, and connecting them to the given question. In this paper, we introduce the Source-aware Semantic Representation Network (SaSR-Net), a novel model designed for AVQA. SaSR-Net utilizes source-wise learnable tokens to efficiently capture and align audio-visual elements with the corresponding question. It streamlines the fusion of audio and visual information using spatial and temporal attention mechanisms to identify answers in multi-modal scenes. Extensive experiments on the Music-AVQA and AVQA-Yang datasets show that SaSR-Net outperforms state-of-the-art AVQA methods.
Recurrent Neural Networks (RNNs) are widely recognized for their proficiency in modeling temporal dependencies, making them highly prevalent in sequential data processing applications. Nevertheless, vanilla RNNs are confronted with the well-known issue of gradient vanishing and exploding, posing a significant challenge for learning and establishing long-range dependencies. Additionally, gated RNNs tend to be over-parameterized, resulting in poor computational efficiency and network generalization. To address these challenges, this paper proposes a novel Delayed Memory Unit (DMU). The DMU incorporates a delay line structure along with delay gates into vanilla RNN, thereby enhancing temporal interaction and facilitating temporal credit assignment. Specifically, the DMU is designed to directly distribute the input information to the optimal time instant in the future, rather than aggregating and redistributing it over time through intricate network dynamics. Our proposed DMU demonstrates superior temporal modeling capabilities across a broad range of sequential modeling tasks, utilizing considerably fewer parameters than other state-of-the-art gated RNN models in applications such as speech recognition, radar gesture recognition, ECG waveform segmentation, and permuted sequential image classification.
The rapid advancement of AI technologies, particularly Large Language Models (LLMs), is establishing a new paradigm for Business Intelligence (BI). Despite the emergence of pioneering work in enhancing BI systems with LLMs, we have identified the following three issues when deployed in real industrial scenarios: interaction limitations, performance bottlenecks, and functionality deficiencies. In this paper, we present SiriusBI, an end-to-end business intelligence system that is designed to address the three issues simultaneously. First, we propose an intelligent and application-oriented module called multi-round dialogue with querying, which aims to overcome the prevalent interaction limitations in current BI solutions. Next, to mitigate the performance bottlenecks caused by scenario migration, we introduce two SQL generation methods that strike a balance between accuracy and deployment costs. Finally, to tackle the practical challenges posed by functionality deficiencies, we develop an end-to-end workflow that covers the entire BI process, ensuring that SiriusBI delivers a robust and complete set of functionalities. As an independent cloud service in Tencent's data platform, SiriusBI has been applied across Tencent's finance, advertising, and cloud sectors, providing services to dozens of enterprise clients. Experiments on real-world datasets and practical applications in industrial BI scenarios demonstrate the practicality and effectiveness of SiriusBI. Remarkably, SiriusBI achieves remarkable accuracy rates of 97% in SQL generation for Tencent Finance, 89% for Tencent Advertisement, and 91% for Tencent Cloud.
Head pose estimation (HPE) requires a sophisticated understanding of 3D spatial relationships to generate precise yaw, pitch, and roll angles. Previous HPE models, primarily CNN-based, rely on cropped close-up human head images as inputs and often lack robustness in real-world scenario. Vision Language Models (VLMs) can analyze entire images while focusing on specific objects through their attention mechanisms. In this paper, we propose a novel framework to improve the HPE accuracy by leveraging the object detection grounding capability of a VLM, referred to as CogVLM. We empirically find that directly LoRA fine-tuning of this VLM for the HPE task fails to achieve desirable HPE accuracy, while some model merging methods can improve accuracy but frequently produce blended invalid response formats, struggling to handle both object detection and HPE tasks simultaneously. To integrate HPE capability into CogVLM effectively, we develop a novel LoRA layer-based model merging method. This merging approach applies a high cosine similarity threshold and a winner-takes-all layer selection strategy, aligning attention to the HPE task while preserving original object detection knowledge. It successfully resolves issues with blended invalid response formats and improves accuracy. Results show that our HPE-CogVLM achieves a 31.5\% reduction in Mean Absolute Error over the current state-of-the-art CNN model, 6DRepNet, in cross-dataset evaluation. Furthermore, HPE-CogVLM outperforms both directly LoRA fine-tuned and task arithmetic-based merged VLMs across all HPE metrics.
Large Language Models (LLMs) have become essential in advancing natural language processing (NLP) tasks, but their sequential token generation limits inference speed. Multi-Draft Speculative Decoding (MDSD) offers a promising solution by using a smaller draft model to generate multiple token sequences, which the target LLM verifies in parallel. However, current heuristic approaches, such as Recursive Rejection Sampling (RRS), suffer from low acceptance rates in subsequent drafts, limiting the advantages of using multiple drafts. Meanwhile, Optimal Transport with Membership Cost (OTM) can theoretically improve acceptance rates, but its computational cost is too high for real-time use. We present SpecHub, a novel, efficient sampling-verification method for MDSD that improves acceptance rates with only linear computational overhead. By simplifying the OTM problem into a compact Linear Programming model, SpecHub significantly reduces computational complexity. It further accelerates sampling by leveraging a sparse joint distribution, focusing computation on high-probability token sequences. In extensive experiments, Spechub consistently generates 0.05-0.27 and 0.02-0.16 more tokens per step than RRS and RRS without replacement. We attach our code at \url{//github.com/MasterGodzilla/Speculative_decoding_OT}.
The Cancer Registry of Norway (CRN) is a part of the Norwegian Institute of Public Health (NIPH) and is tasked with producing statistics on cancer among the Norwegian population. For this task, CRN develops, tests, and evolves a software system called Cancer Registration Support System (CaReSS). It is a complex socio-technical software system that interacts with many entities (e.g., hospitals, medical laboratories, and other patient registries) to achieve its task. For cost-effective testing of CaReSS, CRN has employed EvoMaster, an AI-based REST API testing tool combined with an integrated classical machine learning model. Within this context, we propose Qlinical to investigate the feasibility of using, inside EvoMaster, a Quantum Neural Network (QNN) classifier, i.e., a quantum machine learning model, instead of the existing classical machine learning model. Results indicate that Qlinical can achieve performance comparable to that of EvoClass. We further explore the effects of various QNN configurations on performance and offer recommendations for optimal QNN settings for future QNN developers.
In recent years, Face Image Quality Assessment (FIQA) has become an indispensable part of the face recognition system to guarantee the stability and reliability of recognition performance in an unconstrained scenario. For this purpose, the FIQA method should consider both the intrinsic property and the recognizability of the face image. Most previous works aim to estimate the sample-wise embedding uncertainty or pair-wise similarity as the quality score, which only considers the information from partial intra-class. However, these methods ignore the valuable information from the inter-class, which is for estimating to the recognizability of face image. In this work, we argue that a high-quality face image should be similar to its intra-class samples and dissimilar to its inter-class samples. Thus, we propose a novel unsupervised FIQA method that incorporates Similarity Distribution Distance for Face Image Quality Assessment (SDD-FIQA). Our method generates quality pseudo-labels by calculating the Wasserstein Distance (WD) between the intra-class similarity distributions and inter-class similarity distributions. With these quality pseudo-labels, we are capable of training a regression network for quality prediction. Extensive experiments on benchmark datasets demonstrate that the proposed SDD-FIQA surpasses the state-of-the-arts by an impressive margin. Meanwhile, our method shows good generalization across different recognition systems.
Named entity recognition (NER) in Chinese is essential but difficult because of the lack of natural delimiters. Therefore, Chinese Word Segmentation (CWS) is usually considered as the first step for Chinese NER. However, models based on word-level embeddings and lexicon features often suffer from segmentation errors and out-of-vocabulary (OOV) words. In this paper, we investigate a Convolutional Attention Network called CAN for Chinese NER, which consists of a character-based convolutional neural network (CNN) with local-attention layer and a gated recurrent unit (GRU) with global self-attention layer to capture the information from adjacent characters and sentence contexts. Also, compared to other models, not depending on any external resources like lexicons and employing small size of char embeddings make our model more practical. Extensive experimental results show that our approach outperforms state-of-the-art methods without word embedding and external lexicon resources on different domain datasets including Weibo, MSRA and Chinese Resume NER dataset.