Balancing is, especially among players, a highly debated topic of video games. Whether a game is sufficiently balanced greatly influences its reception, player satisfaction, churn rates and success. Yet, conceptions about the definition of balance diverge across industry, academia and players, and different understandings of designing balance can lead to worse player experiences than actual imbalances. This work accumulates concepts of balancing video games from industry and academia and introduces a player-driven approach to optimize player experience and satisfaction. Using survey data from 680 participants and empirically recorded data of over 4 million in-game fights of Guild Wars 2, we aggregate player opinions and requirements, contrast them to the status quo and approach a democratized quantitative technique to approximate closer configurations of balance. We contribute a strategy of refining balancing notions, a methodology of tailoring balance to the actual player base and point to an exemplary artifact that realizes this process.
Human evaluation plays a crucial role in Natural Language Processing (NLP) as it assesses the quality and relevance of developed systems, thereby facilitating their enhancement. However, the absence of widely accepted human evaluation metrics in NLP hampers fair comparisons among different systems and the establishment of universal assessment standards. Through an extensive analysis of existing literature on human evaluation metrics, we identified several gaps in NLP evaluation methodologies. These gaps served as motivation for developing our own hierarchical evaluation framework. The proposed framework offers notable advantages, particularly in providing a more comprehensive representation of the NLP system's performance. We applied this framework to evaluate the developed Machine Reading Comprehension system, which was utilized within a human-AI symbiosis model. The results highlighted the associations between the quality of inputs and outputs, underscoring the necessity to evaluate both components rather than solely focusing on outputs. In future work, we will investigate the potential time-saving benefits of our proposed framework for evaluators assessing NLP systems.
Robot sequential decision-making in the real world is a challenge because it requires the robots to simultaneously reason about the current world state and dynamics, while planning actions to accomplish complex tasks. On the one hand, declarative languages and reasoning algorithms well support representing and reasoning with commonsense knowledge. But these algorithms are not good at planning actions toward maximizing cumulative reward over a long, unspecified horizon. On the other hand, probabilistic planning frameworks, such as Markov decision processes (MDPs) and partially observable MDPs (POMDPs), well support planning to achieve long-term goals under uncertainty. But they are ill-equipped to represent or reason about knowledge that is not directly related to actions. In this article, we present a novel algorithm, called iCORPP, to simultaneously estimate the current world state, reason about world dynamics, and construct task-oriented controllers. In this process, robot decision-making problems are decomposed into two interdependent (smaller) subproblems that focus on reasoning to "understand the world" and planning to "achieve the goal" respectively. Contextual knowledge is represented in the reasoning component, which makes the planning component epistemic and enables active information gathering. The developed algorithm has been implemented and evaluated both in simulation and on real robots using everyday service tasks, such as indoor navigation, dialog management, and object delivery. Results show significant improvements in scalability, efficiency, and adaptiveness, compared to competitive baselines including handcrafted action policies.
In role-playing games a Game Master (GM) is the player in charge of the game, who must design the challenges the players face and narrate the outcomes of their actions. In this work we discuss some challenges to model GMs from an Interactive Storytelling and Natural Language Processing perspective. Following those challenges we propose three test categories to evaluate such dialogue systems, and we use them to test ChatGPT, Bard and OpenAssistant as out-of-the-box GMs.
Digital image forensics plays a crucial role in image authentication and manipulation localization. Despite the progress powered by deep neural networks, existing forgery localization methodologies exhibit limitations when deployed to unseen datasets and perturbed images (i.e., lack of generalization and robustness to real-world applications). To circumvent these problems and aid image integrity, this paper presents a generalized and robust manipulation localization model through the analysis of pixel inconsistency artifacts. The rationale is grounded on the observation that most image signal processors (ISP) involve the demosaicing process, which introduces pixel correlations in pristine images. Moreover, manipulating operations, including splicing, copy-move, and inpainting, directly affect such pixel regularity. We, therefore, first split the input image into several blocks and design masked self-attention mechanisms to model the global pixel dependency in input images. Simultaneously, we optimize another local pixel dependency stream to mine local manipulation clues within input forgery images. In addition, we design novel Learning-to-Weight Modules (LWM) to combine features from the two streams, thereby enhancing the final forgery localization performance. To improve the training process, we propose a novel Pixel-Inconsistency Data Augmentation (PIDA) strategy, driving the model to focus on capturing inherent pixel-level artifacts instead of mining semantic forgery traces. This work establishes a comprehensive benchmark integrating 15 representative detection models across 12 datasets. Extensive experiments show that our method successfully extracts inherent pixel-inconsistency forgery fingerprints and achieve state-of-the-art generalization and robustness performances in image manipulation localization.
Unlike perfect information games, where all elements are known to every player, imperfect information games emulate the real-world complexities of decision-making under uncertain or incomplete information. GPT-4, the recent breakthrough in large language models (LLMs) trained on massive passive data, is notable for its knowledge retrieval and reasoning abilities. This paper delves into the applicability of GPT-4's learned knowledge for imperfect information games. To achieve this, we introduce \textbf{Suspicion-Agent}, an innovative agent that leverages GPT-4's capabilities for performing in imperfect information games. With proper prompt engineering to achieve different functions, Suspicion-Agent based on GPT-4 demonstrates remarkable adaptability across a range of imperfect information card games. Importantly, GPT-4 displays a strong high-order theory of mind (ToM) capacity, meaning it can understand others and intentionally impact others' behavior. Leveraging this, we design a planning strategy that enables GPT-4 to competently play against different opponents, adapting its gameplay style as needed, while requiring only the game rules and descriptions of observations as input. In the experiments, we qualitatively showcase the capabilities of Suspicion-Agent across three different imperfect information games and then quantitatively evaluate it in Leduc Hold'em. The results show that Suspicion-Agent can potentially outperform traditional algorithms designed for imperfect information games, without any specialized training or examples. In order to encourage and foster deeper insights within the community, we make our game-related data publicly available.
With the rapid development of deep learning, video deraining has experienced significant progress. However, existing video deraining pipelines cannot achieve satisfying performance for scenes with rain layers of complex spatio-temporal distribution. In this paper, we approach video deraining by employing an event camera. As a neuromorphic sensor, the event camera suits scenes of non-uniform motion and dynamic light conditions. We propose an end-to-end learning-based network to unlock the potential of the event camera for video deraining. First, we devise an event-aware motion detection module to adaptively aggregate multi-frame motion contexts using event-aware masks. Second, we design a pyramidal adaptive selection module for reliably separating the background and rain layers by incorporating multi-modal contextualized priors. In addition, we build a real-world dataset consisting of rainy videos and temporally synchronized event streams. We compare our method with extensive state-of-the-art methods on synthetic and self-collected real-world datasets, demonstrating the clear superiority of our method. The code and dataset are available at \url{//github.com/booker-max/EGVD}.
Images can convey rich semantics and induce various emotions in viewers. Recently, with the rapid advancement of emotional intelligence and the explosive growth of visual data, extensive research efforts have been dedicated to affective image content analysis (AICA). In this survey, we will comprehensively review the development of AICA in the recent two decades, especially focusing on the state-of-the-art methods with respect to three main challenges -- the affective gap, perception subjectivity, and label noise and absence. We begin with an introduction to the key emotion representation models that have been widely employed in AICA and description of available datasets for performing evaluation with quantitative comparison of label noise and dataset bias. We then summarize and compare the representative approaches on (1) emotion feature extraction, including both handcrafted and deep features, (2) learning methods on dominant emotion recognition, personalized emotion prediction, emotion distribution learning, and learning from noisy data or few labels, and (3) AICA based applications. Finally, we discuss some challenges and promising research directions in the future, such as image content and context understanding, group emotion clustering, and viewer-image interaction.
Multi-agent influence diagrams (MAIDs) are a popular form of graphical model that, for certain classes of games, have been shown to offer key complexity and explainability advantages over traditional extensive form game (EFG) representations. In this paper, we extend previous work on MAIDs by introducing the concept of a MAID subgame, as well as subgame perfect and trembling hand perfect equilibrium refinements. We then prove several equivalence results between MAIDs and EFGs. Finally, we describe an open source implementation for reasoning about MAIDs and computing their equilibria.
Machine learning plays a role in many deployed decision systems, often in ways that are difficult or impossible to understand by human stakeholders. Explaining, in a human-understandable way, the relationship between the input and output of machine learning models is essential to the development of trustworthy machine-learning-based systems. A burgeoning body of research seeks to define the goals and methods of explainability in machine learning. In this paper, we seek to review and categorize research on counterfactual explanations, a specific class of explanation that provides a link between what could have happened had input to a model been changed in a particular way. Modern approaches to counterfactual explainability in machine learning draw connections to the established legal doctrine in many countries, making them appealing to fielded systems in high-impact areas such as finance and healthcare. Thus, we design a rubric with desirable properties of counterfactual explanation algorithms and comprehensively evaluate all currently-proposed algorithms against that rubric. Our rubric provides easy comparison and comprehension of the advantages and disadvantages of different approaches and serves as an introduction to major research themes in this field. We also identify gaps and discuss promising research directions in the space of counterfactual explainability.
Policy gradient methods are often applied to reinforcement learning in continuous multiagent games. These methods perform local search in the joint-action space, and as we show, they are susceptable to a game-theoretic pathology known as relative overgeneralization. To resolve this issue, we propose Multiagent Soft Q-learning, which can be seen as the analogue of applying Q-learning to continuous controls. We compare our method to MADDPG, a state-of-the-art approach, and show that our method achieves better coordination in multiagent cooperative tasks, converging to better local optima in the joint action space.