Identification of nonlinear dynamical systems has been popularized by sparse identification of the nonlinear dynamics (SINDy) via the sequentially thresholded least squares (STLS) algorithm. Many extensions SINDy have emerged in the literature to deal with experimental data which are finite in length and noisy. Recently, the computationally intensive method of ensembling bootstrapped SINDy models (E-SINDy) was proposed for model identification, handling finite, highly noisy data. While the extensions of SINDy are numerous, their sparsity-promoting estimators occasionally provide sparse approximations of the dynamics as opposed to exact recovery. Furthermore, these estimators suffer under multicollinearity, e.g. the irrepresentable condition for the Lasso. In this paper, we demonstrate that the Trimmed Lasso for robust identification of models (TRIM) can provide exact recovery under more severe noise, finite data, and multicollinearity as opposed to E-SINDy. Additionally, the computational cost of TRIM is asymptotically equal to STLS since the sparsity parameter of the TRIM can be solved efficiently by convex solvers. We compare these methodologies on challenging nonlinear systems, specifically the Lorenz 63 system, the Bouc Wen oscillator from the nonlinear dynamics benchmark of No\"el and Schoukens, 2016, and a time delay system describing tool cutting dynamics. This study emphasizes the comparisons between STLS, reweighted $\ell_1$ minimization, and Trimmed Lasso in identification with respect to problems faced by practitioners: the problem of finite and noisy data, the performance of the sparse regression of when the library grows in dimension (multicollinearity), and automatic methods for choice of regularization parameters.
The numerical solution of continuum damage mechanics (CDM) problems suffers from convergence-related challenges during the material softening stage, and consequently existing iterative solvers are subject to a trade-off between computational expense and solution accuracy. In this work, we present a novel unified arc-length (UAL) method, and we derive the formulation of the analytical tangent matrix and governing system of equations for both local and non-local gradient damage problems. Unlike existing versions of arc-length solvers that monolithically scale the external force vector, the proposed method treats the latter as an independent variable and determines the position of the system on the equilibrium path based on all the nodal variations of the external force vector. This approach renders the proposed solver substantially more efficient and robust than existing solvers used in CDM problems. We demonstrate the considerable advantages of the proposed algorithm through several benchmark 1D problems with sharp snap-backs and 2D examples under various boundary conditions and loading scenarios. The proposed UAL approach exhibits a superior ability of overcoming critical increments along the equilibrium path. Moreover, the proposed UAL method is 1-2 orders of magnitude faster than force-controlled arc-length and monolithic Newton-Raphson solvers.
Mixup is an effective data augmentation method that generates new augmented samples by aggregating linear combinations of different original samples. However, if there are noises or aberrant features in the original samples, Mixup may propagate them to the augmented samples, leading to over-sensitivity of the model to these outliers . To solve this problem, this paper proposes a new Mixup method called AMPLIFY. This method uses the Attention mechanism of Transformer itself to reduce the influence of noises and aberrant values in the original samples on the prediction results, without increasing additional trainable parameters, and the computational cost is very low, thereby avoiding the problem of high resource consumption in common Mixup methods such as Sentence Mixup . The experimental results show that, under a smaller computational resource cost, AMPLIFY outperforms other Mixup methods in text classification tasks on 7 benchmark datasets, providing new ideas and new ways to further improve the performance of pre-trained models based on the Attention mechanism, such as BERT, ALBERT, RoBERTa, and GPT. Our code can be obtained at //github.com/kiwi-lilo/AMPLIFY.
Datacenter capacity is growing exponentially to satisfy the increasing demand for emerging computationally-intensive applications, such as deep learning. This trend has led to concerns over datacenters' increasing energy consumption and carbon footprint. The basic prerequisite for optimizing a datacenter's energy- and carbon-efficiency is accurately monitoring and attributing energy consumption to specific users and applications. Since datacenter servers tend to be multi-tenant, i.e., they host many applications, server- and rack-level power monitoring alone does not provide insight into their resident applications' energy usage and carbon emissions. At the same time, current application-level energy monitoring and attribution techniques are intrusive: they require privileged access to servers and require coordinated support in hardware and software, which is not always possible in cloud. To address the problem, we design WattScope, a system for non-intrusively estimating the power consumption of individual applications using external measurements of a server's aggregate power usage without requiring direct access to the server's operating system or applications. Our key insight is that, based on an analysis of production traces, the power characteristics of datacenter workloads, e.g., low variability, low magnitude, and high periodicity, are highly amenable to disaggregation of a server's total power consumption into application-specific values. WattScope adapts and extends a machine learning-based technique for disaggregating building power and applies it to server- and rack-level power meter measurements in data centers. We evaluate WattScope's accuracy on a production workload and show that it yields high accuracy, e.g., often <10% normalized mean absolute error, and is thus a potentially useful tool for datacenters in externally monitoring application-level power usage.
Trace finite element methods have become a popular option for solving surface partial differential equations, especially in problems where surface and bulk effects are coupled. In such methods a surface mesh is formed by approximately intersecting the continuous surface on which the PDE is posed with a three-dimensional (bulk) tetrahedral mesh. In classical $H^1$-conforming trace methods, the surface finite element space is obtained by restricting a bulk finite element space to the surface mesh. It is not clear how to carry out a similar procedure in order to obtain other important types of finite element spaces such as $H({\rm div})$-conforming spaces. Following previous work of Olshanskii, Reusken, and Xu on $H^1$-conforming methods, we develop a ``quasi-trace'' mixed method for the Laplace-Beltrami problem. The finite element mesh is taken to be the intersection of the surface with a regular tetrahedral bulk mesh as previously described, resulting in a surface triangulation that is highly unstructured and anisotropic but satisfies a classical maximum angle condition. The mixed method is then employed on this mesh. Optimal error estimates with respect to the bulk mesh size are proved along with superconvergent estimates for the projection of the scalar error and a postprocessed scalar approximation.
We present a novel stabilized isogeometric formulation for the Stokes problem, where the geometry of interest is obtained via overlapping NURBS (non-uniform rational B-spline) patches, i.e., one patch on top of another in an arbitrary but predefined hierarchical order. All the visible regions constitute the computational domain, whereas independent patches are coupled through visible interfaces using Nitsche's formulation. Such a geometric representation inevitably involves trimming, which may yield trimmed elements of extremely small measures (referred to as bad elements) and thus lead to the instability issue. Motivated by the minimal stabilization method that rigorously guarantees stability for trimmed geometries [1], in this work we generalize it to the Stokes problem on overlapping patches. Central to our method is the distinct treatments for the pressure and velocity spaces: Stabilization for velocity is carried out for the flux terms on interfaces, whereas pressure is stabilized in all the bad elements. We provide a priori error estimates with a comprehensive theoretical study. Through a suite of numerical tests, we first show that optimal convergence rates are achieved, which consistently agrees with our theoretical findings. Second, we show that the accuracy of pressure is significantly improved by several orders using the proposed stabilization method, compared to the results without stabilization. Finally, we also demonstrate the flexibility and efficiency of the proposed method in capturing local features in the solution field.
We make two contributions to the Isolation Forest method for anomaly and outlier detection. The first contribution is an information-theoretically motivated generalisation of the score function that is used to aggregate the scores across random tree estimators. This generalisation allows one to take into account not just the ensemble average across trees but instead the whole distribution. The second contribution is an alternative scoring function at the level of the individual tree estimator, in which we replace the depth-based scoring of the Isolation Forest with one based on hyper-volumes associated to an isolation tree's leaf nodes. We motivate the use of both of these methods on generated data and also evaluate them on 34 datasets from the recent and exhaustive ``ADBench'' benchmark, finding significant improvement over the standard isolation forest for both variants on some datasets and improvement on average across all datasets for one of the two variants. The code to reproduce our results is made available as part of the submission.
Ordinary state-based peridynamic (OSB-PD) models have an unparalleled capability to simulate crack propagation phenomena in solids with arbitrary Poisson's ratio. However, their non-locality also leads to prohibitively high computational cost. In this paper, a fast solution scheme for OSB-PD models based on matrix operation is introduced, with which, the graphics processing units (GPUs) are used to accelerate the computation. For the purpose of comparison and verification, a commonly used solution scheme based on loop operation is also presented. An in-house software is developed in MATLAB. Firstly, the vibration of a cantilever beam is solved for validating the loop- and matrix-based schemes by comparing the numerical solutions to those produced by a FEM software. Subsequently, two typical dynamic crack propagation problems are simulated to illustrate the effectiveness of the proposed schemes in solving dynamic fracture problems. Finally, the simulation of the Brokenshire torsion experiment is carried out by using the matrix-based scheme, and the similarity in the shapes of the experimental and numerical broken specimens further demonstrates the ability of the proposed approach to deal with 3D non-planar fracture problems. In addition, the speed-up of the matrix-based scheme with respect to the loop-based scheme and the performance of the GPU acceleration are investigated. The results emphasize the high computational efficiency of the matrix-based implementation scheme.
We examine a stochastic formulation for data-driven optimization wherein the decision-maker is not privy to the true distribution, but has knowledge that it lies in some hypothesis set and possesses a historical data set, from which information about it can be gleaned. We define a prescriptive solution as a decision rule mapping such a data set to decisions. As there does not exist prescriptive solutions that are generalizable over the entire hypothesis set, we define out-of-sample optimality as a local average over a neighbourhood of hypotheses, and averaged over the sampling distribution. We prove sufficient conditions for local out-of-sample optimality, which reduces to functions of the sufficient statistic of the hypothesis family. We present an optimization problem that would solve for such an out-of-sample optimal solution, and does so efficiently by a combination of sampling and bisection search algorithms. Finally, we illustrate our model on the newsvendor model, and find strong performance when compared against alternatives in the literature. There are potential implications of our research on end-to-end learning and Bayesian optimization.
The study further explores randomized QMC (RQMC), which maintains the QMC convergence rate and facilitates computational efficiency analysis. Emphasis is laid on integrating randomly shifted lattice rules, a distinct RQMC quadrature, with IS,a classic variance reduction technique. The study underscores the intricacies of establishing a theoretical convergence rate for IS in QMC compared to MC, given the influence of problem dimensions and smoothness on QMC. The research also touches on the significance of IS density selection and its potential implications. The study culminates in examining the error bound of IS with a randomly shifted lattice rule, drawing inspiration from the reproducing kernel Hilbert space (RKHS). In the realm of finance and statistics, many problems boil down to computing expectations, predominantly integrals concerning a Gaussian measure. This study considers optimal drift importance sampling (ODIS) and Laplace importance sampling (LapIS) as common importance densities. Conclusively, the paper establishes that under certain conditions, the IS-randomly shifted lattice rule can achieve a near $O(N^{-1})$ error bound.
We propose an approach to compute inner and outer-approximations of the sets of values satisfying constraints expressed as arbitrarily quantified formulas. Such formulas arise for instance when specifying important problems in control such as robustness, motion planning or controllers comparison. We propose an interval-based method which allows for tractable but tight approximations. We demonstrate its applicability through a series of examples and benchmarks using a prototype implementation.