The freeform architectural modeling process often involves two important stages: concept design and digital modeling. In the first stage, architects usually sketch the overall 3D shape and the panel layout on a physical or digital paper briefly. In the second stage, a digital 3D model is created using the sketch as a reference. The digital model needs to incorporate geometric requirements for its components, such as the planarity of panels due to consideration of construction costs, which can make the modeling process more challenging. In this work, we present a novel sketch-based system to bridge the concept design and digital modeling of freeform roof-like shapes represented as planar quadrilateral (PQ) meshes. Our system allows the user to sketch the surface boundary and contour lines under axonometric projection and supports the sketching of occluded regions. In addition, the user can sketch feature lines to provide directional guidance to the PQ mesh layout. Given the 2D sketch input, we propose a deep neural network to infer in real-time the underlying surface shape along with a dense conjugate direction field, both of which are used to extract the final PQ mesh. To train and validate our network, we generate a large synthetic dataset that mimics architect sketching of freeform quadrilateral patches. The effectiveness and usability of our system are demonstrated with quantitative and qualitative evaluation as well as user studies.
Digital whole slides images contain an enormous amount of information providing a strong motivation for the development of automated image analysis tools. Particularly deep neural networks show high potential with respect to various tasks in the field of digital pathology. However, a limitation is given by the fact that typical deep learning algorithms require (manual) annotations in addition to the large amounts of image data, to enable effective training. Multiple instance learning exhibits a powerful tool for learning deep neural networks in a scenario without fully annotated data. These methods are particularly effective in this domain, due to the fact that labels for a complete whole slide image are often captured routinely, whereas labels for patches, regions or pixels are not. This potential already resulted in a considerable number of publications, with the majority published in the last three years. Besides the availability of data and a high motivation from the medical perspective, the availability of powerful graphics processing units exhibits an accelerator in this field. In this paper, we provide an overview of widely and effectively used concepts of used deep multiple instance learning approaches, recent advances and also critically discuss remaining challenges and future potential.
Previous deep learning-based video stabilizers require a large scale of paired unstable and stable videos for training, which are difficult to collect. Traditional trajectory-based stabilizers, on the other hand, divide the task into several sub-tasks and tackle them subsequently, which are fragile in textureless and occluded regions regarding the usage of hand-crafted features. In this paper, we attempt to tackle the video stabilization problem in a deep unsupervised learning manner, which borrows the divide-and-conquer idea from traditional stabilizers while leveraging the representation power of DNNs to handle the challenges in real-world scenarios. Technically, DUT is composed of a trajectory estimation stage and a trajectory smoothing stage. In the trajectory estimation stage, we first estimate the motion of keypoints, initialize and refine the motion of grids via a novel multi-homography estimation strategy and a motion refinement network, respectively, and get the grid-based trajectories via temporal association. In the trajectory smoothing stage, we devise a novel network to predict dynamic smoothing kernels for trajectory smoothing, which can well adapt to trajectories with different dynamic patterns. We exploit the spatial and temporal coherence of keypoints and grid vertices to formulate the training objectives, resulting in an unsupervised training scheme. Experiment results on public benchmarks show that DUT outperforms state-of-the-art methods both qualitatively and quantitatively. The source code is available at //github.com/Annbless/DUTCode.
For frequency division duplex systems, the essential downlink channel state information (CSI) feedback includes the links of compression, feedback, decompression and reconstruction to reduce the feedback overhead. One efficient CSI feedback method is the Auto-Encoder (AE) structure based on deep learning, yet facing problems in actual deployments, such as selecting the deployment mode when deploying in a cell with multiple complex scenarios. Rather than designing an AE network with huge complexity to deal with CSI of all scenarios, a more realistic mode is to divide the CSI dataset by region/scenario and use multiple relatively simple AE networks to handle subregions' CSI. However, both require high memory capacity for user equipment (UE) and are not suitable for low-level devices. In this paper, we propose a new user-friendly-designed framework based on the latter multi-tasking mode. Via Multi-Task Learning, our framework, Single-encoder-to-Multiple-decoders (S-to-M), designs the multiple independent AEs into a joint architecture: a shared encoder corresponds to multiple task-specific decoders. We also complete our framework with GateNet as a classifier to enable the base station autonomously select the right task-specific decoder corresponding to the subregion. Experiments on the simulating multi-scenario CSI dataset demonstrate our proposed S-to-M's advantages over the other benchmark modes, i.e., significantly reducing the model complexity and the UE's memory consumption
Many innovative applications require establishing correspondences among 3D geometric objects. However, the countless possible deformations of smooth surfaces make shape matching a challenging task. Finding an embedding to represent the different shapes in high-dimensional space where the matching is easier to solve is a well-trodden path that has given many outstanding solutions. Recently, a new trend has shown advantages in learning such representations. This novel idea motivated us to investigate which properties differentiate these data-driven embeddings and which ones promote state-of-the-art results. In this study, we analyze, for the first time, properties that arise in data-driven learned embedding and their relation to the shape-matching task. Our discoveries highlight the close link between matching and smoothness, which naturally emerge from training. Also, we demonstrate the relation between the orthogonality of the embedding and the bijectivity of the correspondence. Our experiments show exciting results, overcoming well-established alternatives and shedding a different light on relevant contexts and properties for learned embeddings.
Accurate camera pose estimation is a fundamental requirement for numerous applications, such as autonomous driving, mobile robotics, and augmented reality. In this work, we address the problem of estimating the global 6 DoF camera pose from a single RGB image in a given environment. Previous works consider every part of the image valuable for localization. However, many image regions such as the sky, occlusions, and repetitive non-distinguishable patterns cannot be utilized for localization. In addition to adding unnecessary computation efforts, extracting and matching features from such regions produce many wrong matches which in turn degrades the localization accuracy and efficiency. Our work addresses this particular issue and shows by exploiting an interesting concept of sparse 3D models that we can exploit discriminatory environment parts and avoid useless image regions for the sake of a single image localization. Interestingly, through avoiding selecting keypoints from non-reliable image regions such as trees, bushes, cars, pedestrians, and occlusions, our work acts naturally as an outlier filter. This makes our system highly efficient in that minimal set of correspondences is needed and highly accurate as the number of outliers is low. Our work exceeds state-ofthe-art methods on outdoor Cambridge Landmarks dataset. With only relying on single image at inference, it outweighs in terms of accuracy methods that exploit pose priors and/or reference 3D models while being much faster. By choosing as little as 100 correspondences, it surpasses similar methods that localize from thousands of correspondences, while being more efficient. In particular, it achieves, compared to these methods, an improvement of localization by 33% on OldHospital scene. Furthermore, It outstands direct pose regressors even those that learn from sequence of images
The labels of monocular 3D object detection (M3OD) are expensive to obtain. Meanwhile, there usually exists numerous unlabeled data in practical applications, and pre-training is an efficient way of exploiting the knowledge in unlabeled data. However, the pre-training paradigm for M3OD is hardly studied. We aim to bridge this gap in this work. To this end, we first draw two observations: (1) The guideline of devising pre-training tasks is imitating the representation of the target task. (2) Combining depth estimation and 2D object detection is a promising M3OD pre-training baseline. Afterwards, following the guideline, we propose several strategies to further improve this baseline, which mainly include target guided semi-dense depth estimation, keypoint-aware 2D object detection, and class-level loss adjustment. Combining all the developed techniques, the obtained pre-training framework produces pre-trained backbones that improve M3OD performance significantly on both the KITTI-3D and nuScenes benchmarks. For example, by applying a DLA34 backbone to a naive center-based M3OD detector, the moderate ${\rm AP}_{3D}70$ score of Car on the KITTI-3D testing set is boosted by 18.71\% and the NDS score on the nuScenes validation set is improved by 40.41\% relatively.
Existing works often focus on reducing the architecture redundancy for accelerating image classification but ignore the spatial redundancy of the input image. This paper proposes an efficient image classification pipeline to solve this problem. We first pinpoint task-aware regions over the input image by a lightweight patch proposal network called AnchorNet. We then feed these localized semantic patches with much smaller spatial redundancy into a general classification network. Unlike the popular design of deep CNN, we aim to carefully design the Receptive Field of AnchorNet without intermediate convolutional paddings. This ensures the exact mapping from a high-level spatial location to the specific input image patch. The contribution of each patch is interpretable. Moreover, AnchorNet is compatible with any downstream architecture. Experimental results on ImageNet show that our method outperforms SOTA dynamic inference methods with fewer inference costs. Our code is available at //github.com/winycg/AnchorNet.
Depth maps are used in a wide range of applications from 3D rendering to 2D image effects such as Bokeh. However, those predicted by single image depth estimation (SIDE) models often fail to capture isolated holes in objects and/or have inaccurate boundary regions. Meanwhile, high-quality masks are much easier to obtain, using commercial auto-masking tools or off-the-shelf methods of segmentation and matting or even by manual editing. Hence, in this paper, we formulate a novel problem of mask-guided depth refinement that utilizes a generic mask to refine the depth prediction of SIDE models. Our framework performs layered refinement and inpainting/outpainting, decomposing the depth map into two separate layers signified by the mask and the inverse mask. As datasets with both depth and mask annotations are scarce, we propose a self-supervised learning scheme that uses arbitrary masks and RGB-D datasets. We empirically show that our method is robust to different types of masks and initial depth predictions, accurately refining depth values in inner and outer mask boundary regions. We further analyze our model with an ablation study and demonstrate results on real applications. More information can be found at //sooyekim.github.io/MaskDepth/ .
The U-Net was presented in 2015. With its straight-forward and successful architecture it quickly evolved to a commonly used benchmark in medical image segmentation. The adaptation of the U-Net to novel problems, however, comprises several degrees of freedom regarding the exact architecture, preprocessing, training and inference. These choices are not independent of each other and substantially impact the overall performance. The present paper introduces the nnU-Net ('no-new-Net'), which refers to a robust and self-adapting framework on the basis of 2D and 3D vanilla U-Nets. We argue the strong case for taking away superfluous bells and whistles of many proposed network designs and instead focus on the remaining aspects that make out the performance and generalizability of a method. We evaluate the nnU-Net in the context of the Medical Segmentation Decathlon challenge, which measures segmentation performance in ten disciplines comprising distinct entities, image modalities, image geometries and dataset sizes, with no manual adjustments between datasets allowed. At the time of manuscript submission, nnU-Net achieves the highest mean dice scores across all classes and seven phase 1 tasks (except class 1 in BrainTumour) in the online leaderboard of the challenge.
Recent advances in 3D fully convolutional networks (FCN) have made it feasible to produce dense voxel-wise predictions of volumetric images. In this work, we show that a multi-class 3D FCN trained on manually labeled CT scans of several anatomical structures (ranging from the large organs to thin vessels) can achieve competitive segmentation results, while avoiding the need for handcrafting features or training class-specific models. To this end, we propose a two-stage, coarse-to-fine approach that will first use a 3D FCN to roughly define a candidate region, which will then be used as input to a second 3D FCN. This reduces the number of voxels the second FCN has to classify to ~10% and allows it to focus on more detailed segmentation of the organs and vessels. We utilize training and validation sets consisting of 331 clinical CT images and test our models on a completely unseen data collection acquired at a different hospital that includes 150 CT scans, targeting three anatomical organs (liver, spleen, and pancreas). In challenging organs such as the pancreas, our cascaded approach improves the mean Dice score from 68.5 to 82.2%, achieving the highest reported average score on this dataset. We compare with a 2D FCN method on a separate dataset of 240 CT scans with 18 classes and achieve a significantly higher performance in small organs and vessels. Furthermore, we explore fine-tuning our models to different datasets. Our experiments illustrate the promise and robustness of current 3D FCN based semantic segmentation of medical images, achieving state-of-the-art results. Our code and trained models are available for download: //github.com/holgerroth/3Dunet_abdomen_cascade.