亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

3D object detection based on roadside cameras is an additional way for autonomous driving to alleviate the challenges of occlusion and short perception range from vehicle cameras. Previous methods for roadside 3D object detection mainly focus on modeling the depth or height of objects, neglecting the stationary of cameras and the characteristic of inter-frame consistency. In this work, we propose a novel framework, namely MOSE, for MOnocular 3D object detection with Scene cuEs. The scene cues are the frame-invariant scene-specific features, which are crucial for object localization and can be intuitively regarded as the height between the surface of the real road and the virtual ground plane. In the proposed framework, a scene cue bank is designed to aggregate scene cues from multiple frames of the same scene with a carefully designed extrinsic augmentation strategy. Then, a transformer-based decoder lifts the aggregated scene cues as well as the 3D position embeddings for 3D object location, which boosts generalization ability in heterologous scenes. The extensive experiment results on two public benchmarks demonstrate the state-of-the-art performance of the proposed method, which surpasses the existing methods by a large margin.

相關內容

 3D是英文“Three Dimensions”的簡稱,中文是指三維、三個維度、三個坐標,即有長、有寬、有高,換句話說,就是立體的,是相對于只有長和寬的平面(2D)而言。

Unsupervised automatic speech recognition (ASR) aims to learn the mapping between the speech signal and its corresponding textual transcription without the supervision of paired speech-text data. A word/phoneme in the speech signal is represented by a segment of speech signal with variable length and unknown boundary, and this segmental structure makes learning the mapping between speech and text challenging, especially without paired data. In this paper, we propose REBORN,Reinforcement-Learned Boundary Segmentation with Iterative Training for Unsupervised ASR. REBORN alternates between (1) training a segmentation model that predicts the boundaries of the segmental structures in speech signals and (2) training the phoneme prediction model, whose input is the speech feature segmented by the segmentation model, to predict a phoneme transcription. Since supervised data for training the segmentation model is not available, we use reinforcement learning to train the segmentation model to favor segmentations that yield phoneme sequence predictions with a lower perplexity. We conduct extensive experiments and find that under the same setting, REBORN outperforms all prior unsupervised ASR models on LibriSpeech, TIMIT, and five non-English languages in Multilingual LibriSpeech. We comprehensively analyze why the boundaries learned by REBORN improve the unsupervised ASR performance.

Diffusion-based video generation has achieved significant progress, yet generating multiple actions that occur sequentially remains a formidable task. Directly generating a video with sequential actions can be extremely challenging due to the scarcity of fine-grained action annotations and the difficulty in establishing temporal semantic correspondences and maintaining long-term consistency. To tackle this, we propose an intuitive and straightforward solution: splicing multiple single-action video segments sequentially. The core challenge lies in generating smooth and natural transitions between these segments given the inherent complexity and variability of action transitions. We introduce MAVIN (Multi-Action Video INfilling model), designed to generate transition videos that seamlessly connect two given videos, forming a cohesive integrated sequence. MAVIN incorporates several innovative techniques to address challenges in the transition video infilling task. Firstly, a consecutive noising strategy coupled with variable-length sampling is employed to handle large infilling gaps and varied generation lengths. Secondly, boundary frame guidance (BFG) is proposed to address the lack of semantic guidance during transition generation. Lastly, a Gaussian filter mixer (GFM) dynamically manages noise initialization during inference, mitigating train-test discrepancy while preserving generation flexibility. Additionally, we introduce a new metric, CLIP-RS (CLIP Relative Smoothness), to evaluate temporal coherence and smoothness, complementing traditional quality-based metrics. Experimental results on horse and tiger scenarios demonstrate MAVIN's superior performance in generating smooth and coherent video transitions compared to existing methods.

The objective of traffic prediction is to accurately forecast and analyze the dynamics of transportation patterns, considering both space and time. However, the presence of distribution shift poses a significant challenge in this field, as existing models struggle to generalize well when faced with test data that significantly differs from the training distribution. To tackle this issue, this paper introduces a simple and universal spatio-temporal prompt-tuning framework-FlashST, which adapts pre-trained models to the specific characteristics of diverse downstream datasets, improving generalization in diverse traffic prediction scenarios. Specifically, the FlashST framework employs a lightweight spatio-temporal prompt network for in-context learning, capturing spatio-temporal invariant knowledge and facilitating effective adaptation to diverse scenarios. Additionally, we incorporate a distribution mapping mechanism to align the data distributions of pre-training and downstream data, facilitating effective knowledge transfer in spatio-temporal forecasting. Empirical evaluations demonstrate the effectiveness of our FlashST across different spatio-temporal prediction tasks using diverse urban datasets. Code is available at //github.com/HKUDS/FlashST.

Visual place recognition is a challenging task in the field of computer vision, and autonomous robotics and vehicles, which aims to identify a location or a place from visual inputs. Contemporary methods in visual place recognition employ convolutional neural networks and utilize every region within the image for the place recognition task. However, the presence of dynamic and distracting elements in the image may impact the effectiveness of the place recognition process. Therefore, it is meaningful to focus on task-relevant regions of the image for improved recognition. In this paper, we present PlaceFormer, a novel transformer-based approach for visual place recognition. PlaceFormer employs patch tokens from the transformer to create global image descriptors, which are then used for image retrieval. To re-rank the retrieved images, PlaceFormer merges the patch tokens from the transformer to form multi-scale patches. Utilizing the transformer's self-attention mechanism, it selects patches that correspond to task-relevant areas in an image. These selected patches undergo geometric verification, generating similarity scores across different patch sizes. Subsequently, spatial scores from each patch size are fused to produce a final similarity score. This score is then used to re-rank the images initially retrieved using global image descriptors. Extensive experiments on benchmark datasets demonstrate that PlaceFormer outperforms several state-of-the-art methods in terms of accuracy and computational efficiency, requiring less time and memory.

With the advancement of video analysis technology, the multi-object tracking (MOT) problem in complex scenes involving pedestrians is gaining increasing importance. This challenge primarily involves two key tasks: pedestrian detection and re-identification. While significant progress has been achieved in pedestrian detection tasks in recent years, enhancing the effectiveness of re-identification tasks remains a persistent challenge. This difficulty arises from the large total number of pedestrian samples in multi-object tracking datasets and the scarcity of individual instance samples. Motivated by recent rapid advancements in meta-learning techniques, we introduce MAML MOT, a meta-learning-based training approach for multi-object tracking. This approach leverages the rapid learning capability of meta-learning to tackle the issue of sample scarcity in pedestrian re-identification tasks, aiming to improve the model's generalization performance and robustness. Experimental results demonstrate that the proposed method achieves high accuracy on mainstream datasets in the MOT Challenge. This offers new perspectives and solutions for research in the field of pedestrian multi-object tracking.

Although current Text-To-Speech (TTS) models are able to generate high-quality speech samples, there are still challenges in developing emotion intensity controllable TTS. Most existing TTS models achieve emotion intensity control by extracting intensity information from reference speeches. Unfortunately, limited by the lack of modeling for intra-class emotion intensity and the model's information decoupling capability, the generated speech cannot achieve fine-grained emotion intensity control and suffers from information leakage issues. In this paper, we propose an emotion transfer TTS model, which defines a remapping-based sorting method to model intra-class relative intensity information, combined with Mutual Information (MI) to decouple speaker and emotion information, and synthesizes expressive speeches with perceptible intensity differences. Experiments show that our model achieves fine-grained emotion control while preserving speaker information.

3D occupancy-based perception pipeline has significantly advanced autonomous driving by capturing detailed scene descriptions and demonstrating strong generalizability across various object categories and shapes. Current methods predominantly rely on LiDAR or camera inputs for 3D occupancy prediction. These methods are susceptible to adverse weather conditions, limiting the all-weather deployment of self-driving cars. To improve perception robustness, we leverage the recent advances in automotive radars and introduce a novel approach that utilizes 4D imaging radar sensors for 3D occupancy prediction. Our method, RadarOcc, circumvents the limitations of sparse radar point clouds by directly processing the 4D radar tensor, thus preserving essential scene details. RadarOcc innovatively addresses the challenges associated with the voluminous and noisy 4D radar data by employing Doppler bins descriptors, sidelobe-aware spatial sparsification, and range-wise self-attention mechanisms. To minimize the interpolation errors associated with direct coordinate transformations, we also devise a spherical-based feature encoding followed by spherical-to-Cartesian feature aggregation. We benchmark various baseline methods based on distinct modalities on the public K-Radar dataset. The results demonstrate RadarOcc's state-of-the-art performance in radar-based 3D occupancy prediction and promising results even when compared with LiDAR- or camera-based methods. Additionally, we present qualitative evidence of the superior performance of 4D radar in adverse weather conditions and explore the impact of key pipeline components through ablation studies.

Thermal infrared (TIR) cameras are emerging as promising sensors in safety-related fields due to their robustness against external illumination. However, RAW TIR image has 14 bits of pixel depth and needs to be rescaled into 8 bits for general applications. Previous works utilize a global 1D look-up table to compute pixel-wise gain solely based on its intensity, which degrades image quality by failing to consider the local nature of the heat. We propose Fieldscale, a rescaling based on locality-aware 2D fields where both the intensity value and spatial context of each pixel within an image are embedded. It can adaptively determine the pixel gain for each region and produce spatially consistent 8-bit rescaled images with minimal information loss and high visibility. Consistent performance improvement on image quality assessment and two other downstream tasks support the effectiveness and usability of Fieldscale. All the codes are publicly opened to facilitate research advancements in this field. //github.com/hyeonjaegil/fieldscale

Neural implicit representations have recently demonstrated considerable potential in the field of visual simultaneous localization and mapping (SLAM). This is due to their inherent advantages, including low storage overhead and representation continuity. However, these methods necessitate the size of the scene as input, which is impractical for unknown scenes. Consequently, we propose NeB-SLAM, a neural block-based scalable RGB-D SLAM for unknown scenes. Specifically, we first propose a divide-and-conquer mapping strategy that represents the entire unknown scene as a set of sub-maps. These sub-maps are a set of neural blocks of fixed size. Then, we introduce an adaptive map growth strategy to achieve adaptive allocation of neural blocks during camera tracking and gradually cover the whole unknown scene. Finally, extensive evaluations on various datasets demonstrate that our method is competitive in both mapping and tracking when targeting unknown environments.

Most existing knowledge graphs suffer from incompleteness, which can be alleviated by inferring missing links based on known facts. One popular way to accomplish this is to generate low-dimensional embeddings of entities and relations, and use these to make inferences. ConvE, a recently proposed approach, applies convolutional filters on 2D reshapings of entity and relation embeddings in order to capture rich interactions between their components. However, the number of interactions that ConvE can capture is limited. In this paper, we analyze how increasing the number of these interactions affects link prediction performance, and utilize our observations to propose InteractE. InteractE is based on three key ideas -- feature permutation, a novel feature reshaping, and circular convolution. Through extensive experiments, we find that InteractE outperforms state-of-the-art convolutional link prediction baselines on FB15k-237. Further, InteractE achieves an MRR score that is 9%, 7.5%, and 23% better than ConvE on the FB15k-237, WN18RR and YAGO3-10 datasets respectively. The results validate our central hypothesis -- that increasing feature interaction is beneficial to link prediction performance. We make the source code of InteractE available to encourage reproducible research.

北京阿比特科技有限公司