This paper proposes a new task in the field of Answering Subjective Induction Question on Products (SUBJPQA). The answer to this kind of question is non-unique, but can be interpreted from many perspectives. For example, the answer to 'whether the phone is heavy' has a variety of different viewpoints. A satisfied answer should be able to summarize these subjective opinions from multiple sources and provide objective knowledge, such as the weight of a phone. That is quite different from the traditional QA task, in which the answer to a factoid question is unique and can be found from a single data source. To address this new task, we propose a three-steps method. We first retrieve all answer-related clues from multiple knowledge sources on facts and opinions. The implicit commonsense facts are also collected to supplement the necessary but missing contexts. We then capture their relevance with the questions by interactive attention. Next, we design a reinforcement-based summarizer to aggregate all these knowledgeable clues. Based on a template-controlled decoder, we can output a comprehensive and multi-perspective answer. Due to the lack of a relevant evaluated benchmark set for the new task, we construct a large-scale dataset, named SupQA, consisting of 48,352 samples across 15 product domains. Evaluation results show the effectiveness of our approach.
In this paper, we propose a novel generative model that utilizes a conditional Energy-Based Model (EBM) for enhancing Variational Autoencoder (VAE), termed Energy-Calibrated VAE (EC-VAE). Specifically, VAEs often suffer from blurry generated samples due to the lack of a tailored training on the samples generated in the generative direction. On the other hand, EBMs can generate high-quality samples but require expensive Markov Chain Monte Carlo (MCMC) sampling. To address these issues, we introduce a conditional EBM for calibrating the generative direction of VAE during training, without requiring it for the generation at test time. In particular, we train EC-VAE upon both the input data and the calibrated samples with adaptive weight to enhance efficacy while avoiding MCMC sampling at test time. Furthermore, we extend the calibration idea of EC-VAE to variational learning and normalizing flows, and apply EC-VAE to an additional application of zero-shot image restoration via neural transport prior and range-null theory. We evaluate the proposed method with two applications, including image generation and zero-shot image restoration, and the experimental results show that our method achieves the state-of-the-art performance over single-step non-adversarial generation.
This paper presents a new simulation-based approach to address the stochastic Dynamic Traffic Assignment (DTA) problem, focusing on large congested networks and dynamic settings. The proposed methodology incorporates a random walk model inspired by the theoretical concept of the \textit{equivalent impedance} method, specifically designed to overcome the limitations of traditional Multinomial Logit (MNL) models in handling overlapping routes and scaling issues. By iteratively contracting non-overlapping subnetworks into virtual links and computing equivalent virtual travel costs, the route choice decision-making process is shifted to intersections, enabling a more accurate representation of travelers' choices as traffic conditions evolve and allowing more accurate performance under fine-grained temporal segmentation. The approach leverages Directed Acyclic Graphs (DAGs) structure to efficiently find all routes between two nodes, thus obviating the need for route enumeration, which is intractable in general networks. While with the calculation approach of downstream node choice probabilities, all available routes in the network can be selected with non-zero probability. To evaluate the effectiveness of the proposed method, experiments are conducted on two synthetic networks under congested demand scenarios using Simulation of Urban MObility (SUMO), an open-source microscopic traffic simulation software. The results demonstrate the method's robustness, faster convergence, and realistic trip distribution compared to traditional route assignment methods, making it an ideal proposal for real-time or resource-intensive applications such as microscopic demand calibration.
Document-based Question-Answering (QA) tasks are crucial for precise information retrieval. While some existing work focus on evaluating large language model's performance on retrieving and answering questions from documents, assessing the LLMs' performance on QA types that require exact answer selection from predefined options and numerical extraction is yet to be fully assessed. In this paper, we specifically focus on this underexplored context and conduct empirical analysis of LLMs (GPT-4 and GPT 3.5) on question types, including single-choice, yes-no, multiple-choice, and number extraction questions from documents. We use the Cogtale dataset for evaluation, which provide human expert-tagged responses, offering a robust benchmark for precision and factual grounding. We found that LLMs, particularly GPT-4, can precisely answer many single-choice and yes-no questions given relevant context, demonstrating their efficacy in information retrieval tasks. However, their performance diminishes when confronted with multiple-choice and number extraction formats, lowering the overall performance of the model on this task, indicating that these models may not be reliable for the task. This limits the applications of LLMs on applications demanding precise information extraction from documents, such as meta-analysis tasks. However, these findings hinge on the assumption that the retrievers furnish pertinent context necessary for accurate responses, emphasizing the need for further research on the efficacy of retriever mechanisms in enhancing question-answering performance. Our work offers a framework for ongoing dataset evaluation, ensuring that LLM applications for information retrieval and document analysis continue to meet evolving standards.
This paper proposes a distributed version of Determinant Point Processing (DPP) inference to enhance multi-source data diversification under limited communication bandwidth. DPP is a popular probabilistic approach that improves data diversity by enforcing the repulsion of elements in the selected subsets. The well-studied Maximum A Posteriori (MAP) inference in DPP aims to identify the subset with the highest diversity quantified by DPP. However, this approach is limited by the presumption that all data samples are available at one point, which hinders its applicability to real-world applications such as traffic datasets where data samples are distributed across sources and communication between them is band-limited. Inspired by the techniques used in Multiple-Input Multiple-Output (MIMO) communication systems, we propose a strategy for performing MAP inference among distributed sources. Specifically, we show that a lower bound of the diversity-maximized distributed sample selection problem can be treated as a power allocation problem in MIMO systems. A determinant-preserved sparse representation of selected samples is used to perform sample precoding in local sources to be processed by DPP. Our method does not require raw data exchange among sources, but rather a band-limited feedback channel to send lightweight diversity measures, analogous to the CSI message in MIMO systems, from the center to data sources. The experiments show that our scalable approach can outperform baseline methods, including random selection, uninformed individual DPP with no feedback, and DPP with SVD-based feedback, in both i.i.d and non-i.i.d setups. Specifically, it achieves 1 to 6 log-difference diversity gain in the latent representation of CIFAR-10, CIFAR-100, StanfordCars, and GTSRB datasets.
This paper presents a novel approach for performing computations using Look-Up Tables (LUTs) tailored specifically for Compute-in-Memory applications. The aim is to address the scalability challenges associated with LUT-based computation by reducing storage requirements and energy consumption while capitalizing on the faster and more energy-efficient nature of look-up methods compared to conventional mathematical computations. The proposed method leverages a divide and conquer (D&C) strategy to enhance the scalability of LUT-based computation. By breaking down high-precision multiplications into lower-precision operations, the technique achieves significantly lower area overheads, up to approximately 3.7 times less than conventional LUT-based approaches, without compromising accuracy. To validate the effectiveness of the proposed method, extensive simulations using TSMC 65 nm technology were conducted. The experimental analysis reveals that the proposed approach accounts for less than 0.1\% of the total energy consumption, with only a 32\% increase in area overhead. These results demonstrate considerable improvements achieved in energy efficiency and area utilization through the novel low-energy, low-area-overhead LUT-based computation in an SRAM array.
This paper explores meta-learning in sequential recommendation to alleviate the item cold-start problem. Sequential recommendation aims to capture user's dynamic preferences based on historical behavior sequences and acts as a key component of most online recommendation scenarios. However, most previous methods have trouble recommending cold-start items, which are prevalent in those scenarios. As there is generally no side information in the setting of sequential recommendation task, previous cold-start methods could not be applied when only user-item interactions are available. Thus, we propose a Meta-learning-based Cold-Start Sequential Recommendation Framework, namely Mecos, to mitigate the item cold-start problem in sequential recommendation. This task is non-trivial as it targets at an important problem in a novel and challenging context. Mecos effectively extracts user preference from limited interactions and learns to match the target cold-start item with the potential user. Besides, our framework can be painlessly integrated with neural network-based models. Extensive experiments conducted on three real-world datasets verify the superiority of Mecos, with the average improvement up to 99%, 91%, and 70% in HR@10 over state-of-the-art baseline methods.
This paper surveys the field of transfer learning in the problem setting of Reinforcement Learning (RL). RL has been the key solution to sequential decision-making problems. Along with the fast advance of RL in various domains. including robotics and game-playing, transfer learning arises as an important technique to assist RL by leveraging and transferring external expertise to boost the learning process. In this survey, we review the central issues of transfer learning in the RL domain, providing a systematic categorization of its state-of-the-art techniques. We analyze their goals, methodologies, applications, and the RL frameworks under which these transfer learning techniques would be approachable. We discuss the relationship between transfer learning and other relevant topics from an RL perspective and also explore the potential challenges as well as future development directions for transfer learning in RL.
We study the problem of embedding-based entity alignment between knowledge graphs (KGs). Previous works mainly focus on the relational structure of entities. Some further incorporate another type of features, such as attributes, for refinement. However, a vast of entity features are still unexplored or not equally treated together, which impairs the accuracy and robustness of embedding-based entity alignment. In this paper, we propose a novel framework that unifies multiple views of entities to learn embeddings for entity alignment. Specifically, we embed entities based on the views of entity names, relations and attributes, with several combination strategies. Furthermore, we design some cross-KG inference methods to enhance the alignment between two KGs. Our experiments on real-world datasets show that the proposed framework significantly outperforms the state-of-the-art embedding-based entity alignment methods. The selected views, cross-KG inference and combination strategies all contribute to the performance improvement.
We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.
Attention mechanism has been used as an ancillary means to help RNN or CNN. However, the Transformer (Vaswani et al., 2017) recently recorded the state-of-the-art performance in machine translation with a dramatic reduction in training time by solely using attention. Motivated by the Transformer, Directional Self Attention Network (Shen et al., 2017), a fully attention-based sentence encoder, was proposed. It showed good performance with various data by using forward and backward directional information in a sentence. But in their study, not considered at all was the distance between words, an important feature when learning the local dependency to help understand the context of input text. We propose Distance-based Self-Attention Network, which considers the word distance by using a simple distance mask in order to model the local dependency without losing the ability of modeling global dependency which attention has inherent. Our model shows good performance with NLI data, and it records the new state-of-the-art result with SNLI data. Additionally, we show that our model has a strength in long sentences or documents.