Outsourced computing is widely used today. However, current approaches for protecting client data in outsourced computing fall short: use of cryptographic techniques like fully-homomorphic encryption incurs substantial costs, whereas use of hardware-assisted trusted execution environments has been shown to be vulnerable to run-time and side-channel attacks. We present BliMe, an architecture to realize efficient and secure outsourced computation. BliMe consists of a novel and minimal set of instruction set architecture (ISA) extensions implementing a taint-tracking policy to ensure the confidentiality of client data even in the presence of server vulnerabilities. To secure outsourced computation, the BliMe extensions can be used together with an attestable, fixed-function hardware security module (HSM) and an encryption engine that provides atomic decrypt-and-taint and encrypt-and-untaint operations. Clients rely on remote attestation and key agreement with the HSM to ensure that their data can be transferred securely to and from the encryption engine and will always be protected by BliMe's taint-tracking policy while at the server. We provide an RTL implementation BliMe-BOOM based on the BOOM RISC-V core. BliMe-BOOM requires no reduction in clock frequency relative to unmodified BOOM, and has minimal power ($\lt1.5\%$) and FPGA resource ($\leq9.0\%$) overheads. Various implementations of BliMe incur only moderate performance overhead ($8-25\%$). We also provide a machine-checked security proof of a simplified model ISA with BliMe extensions.
Secure multiparty computation (MPC) techniques enable multiple parties to compute joint functions over their private data without sharing that data to other parties, typically by employing powerful cryptographic protocols to protect individual's data. One challenge when writing such functions is that most MPC languages force users to intermix programmatic and privacy concerns in a single application, making it difficult to change or audit a program's underlying privacy policy. Existing policy-agnostic MPC languages rely on run-time / dynamic enforcement to decouple privacy requirements from program logic. Unfortunately, the resulting overhead makes it difficult to scale MPC applications that manipulate structured data. This work proposes to eliminate this overhead by instead transforming programs to semantically equivalent versions that statically enforce user-provided privacy policies. We have implemented this approach in a new MPC language, called Taypsi; our experimental evaluation demonstrates that the resulting system features considerable performance improvements on a variety of MPC applications involving structured data and complex privacy polices.
Powerful large language models have facilitated the development of writing assistants that promise to significantly improve the quality and efficiency of composition and communication. However, a barrier to effective assistance is the lack of personalization in LLM outputs to the author's communication style and specialized knowledge. In this paper, we address this challenge by proposing PEARL, a retrieval-augmented LLM writing assistant personalized with a generation-calibrated retriever. Our retriever is trained to select historic user-authored documents for prompt augmentation, such that they are likely to best personalize LLM generations for a user request. We propose two key novelties for training our retriever: 1) A training data selection method that identifies user requests likely to benefit from personalization and documents that provide that benefit; and 2) A scale-calibrating KL-divergence objective that ensures that our retriever closely tracks the benefit of a document for personalized generation. We demonstrate the effectiveness of PEARL in generating personalized workplace social media posts and Reddit comments. Finally, we showcase the potential of a generation-calibrated retriever to double as a performance predictor and further improve low-quality generations via LLM chaining.
Although image captioning has a vast array of applications, it has not reached its full potential in languages other than English. Arabic, for instance, although the native language of more than 400 million people, remains largely underrepresented in this area. This is due to the lack of labeled data and powerful Arabic generative models. We alleviate this issue by presenting a novel vision-language model dedicated to Arabic, dubbed \textit{Violet}. Our model is based on a vision encoder and a Gemini text decoder that maintains generation fluency while allowing fusion between the vision and language components. To train our model, we introduce a new method for automatically acquiring data from available English datasets. We also manually prepare a new dataset for evaluation. \textit{Violet} performs sizeably better than our baselines on all of our evaluation datasets. For example, it reaches a CIDEr score of $61.2$ on our manually annotated dataset and achieves an improvement of $13$ points on Flickr8k.
Motion planning is a computational problem that finds a sequence of valid trajectories, often based on surrounding agents' forecasting, environmental understanding, and historical and future contexts. It can also be viewed as a game in which agents continuously plan their next move according to other agents' intentions and the encountering environment, further achieving their ultimate goals through incremental actions. To model the dynamic planning and interaction process, we propose a novel framework, DeepEMplanner, which takes the stepwise interaction into account for fine-grained behavior learning. The ego vehicle maximizes each step motion to reach its eventual driving outcome based on the stepwise expectation from agents and its upcoming road conditions. On the other hand, the agents also follow the same philosophy to maximize their stepwise behavior under the encountering environment and the expectations from ego and other agents. Our DeepEMplanner models the interactions among ego, agents, and the dynamic environment in an autoregressive manner by interleaving the Expectation and Maximization processes. Further, we design ego-to-agents, ego-to-map, and ego-to-BEV interaction mechanisms with hierarchical dynamic key objects attention to better model the interactions. Experiments on the nuScenes benchmark show that our approach achieves state-of-the-art results.
Large multimodal models (LMMs) suffer from multimodal hallucination, where they provide incorrect responses misaligned with the given visual information. Recent works have conjectured that one of the reasons behind multimodal hallucination might be due to the vision encoder failing to ground on the image properly. To mitigate this issue, we propose a novel approach that leverages self-feedback as visual cues. Building on this approach, we introduce Volcano, a multimodal self-feedback guided revision model. Volcano generates natural language feedback to its initial response based on the provided visual information and utilizes this feedback to self-revise its initial response. Volcano effectively reduces multimodal hallucination and achieves state-of-the-art on MMHal-Bench, POPE, and GAVIE. It also improves on general multimodal abilities and outperforms previous models on MM-Vet and MMBench. Through a qualitative analysis, we show that Volcano's feedback is properly grounded on the image than the initial response. This indicates that Volcano can provide itself with richer visual information, helping alleviate multimodal hallucination. We publicly release Volcano models of 7B and 13B sizes along with the data and code at //github.com/kaistAI/Volcano.
Measures of data depth have been studied extensively for point data. Motivated by recent work on analysis, clustering, and identifying representative elements in sets of trajectories, we introduce {\em curve stabbing depth} to quantify how deeply a given curve $Q$ is located relative to a given set $\cal C$ of curves in $\mathbb{R}^2$. Curve stabbing depth evaluates the average number of elements of $\cal C$ stabbed by rays rooted along the length of $Q$. We describe an $O(n^3 + n^2 m\log^2m+nm^2\log^2 m)$-time algorithm for computing curve stabbing depth when $Q$ is an $m$-vertex polyline and $\cal C$ is a set of $n$ polylines, each with $O(m)$ vertices.
The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.
Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.
Generative commonsense reasoning which aims to empower machines to generate sentences with the capacity of reasoning over a set of concepts is a critical bottleneck for text generation. Even the state-of-the-art pre-trained language generation models struggle at this task and often produce implausible and anomalous sentences. One reason is that they rarely consider incorporating the knowledge graph which can provide rich relational information among the commonsense concepts. To promote the ability of commonsense reasoning for text generation, we propose a novel knowledge graph augmented pre-trained language generation model KG-BART, which encompasses the complex relations of concepts through the knowledge graph and produces more logical and natural sentences as output. Moreover, KG-BART can leverage the graph attention to aggregate the rich concept semantics that enhances the model generalization on unseen concept sets. Experiments on benchmark CommonGen dataset verify the effectiveness of our proposed approach by comparing with several strong pre-trained language generation models, particularly KG-BART outperforms BART by 5.80, 4.60, in terms of BLEU-3, 4. Moreover, we also show that the generated context by our model can work as background scenarios to benefit downstream commonsense QA tasks.
To provide more accurate, diverse, and explainable recommendation, it is compulsory to go beyond modeling user-item interactions and take side information into account. Traditional methods like factorization machine (FM) cast it as a supervised learning problem, which assumes each interaction as an independent instance with side information encoded. Due to the overlook of the relations among instances or items (e.g., the director of a movie is also an actor of another movie), these methods are insufficient to distill the collaborative signal from the collective behaviors of users. In this work, we investigate the utility of knowledge graph (KG), which breaks down the independent interaction assumption by linking items with their attributes. We argue that in such a hybrid structure of KG and user-item graph, high-order relations --- which connect two items with one or multiple linked attributes --- are an essential factor for successful recommendation. We propose a new method named Knowledge Graph Attention Network (KGAT) which explicitly models the high-order connectivities in KG in an end-to-end fashion. It recursively propagates the embeddings from a node's neighbors (which can be users, items, or attributes) to refine the node's embedding, and employs an attention mechanism to discriminate the importance of the neighbors. Our KGAT is conceptually advantageous to existing KG-based recommendation methods, which either exploit high-order relations by extracting paths or implicitly modeling them with regularization. Empirical results on three public benchmarks show that KGAT significantly outperforms state-of-the-art methods like Neural FM and RippleNet. Further studies verify the efficacy of embedding propagation for high-order relation modeling and the interpretability benefits brought by the attention mechanism.