亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The Open Radio Access Network (Open RAN) framework, emerging as the cornerstone for Artificial Intelligence (AI)-enabled Sixth-Generation (6G) mobile networks, heralds a transformative shift in radio access network architecture. As the adoption of Open RAN accelerates, ensuring its security becomes critical. The RAN Intelligent Controller (RIC) plays a central role in Open RAN by improving network efficiency and flexibility. Nevertheless, it also brings about potential security risks that need careful scrutiny. Therefore, it is imperative to evaluate the current state of RIC security comprehensively. This assessment is essential to gain a profound understanding of the security considerations associated with RIC. This survey combines a comprehensive analysis of RAN security, tracing its evolution from 2G to 5G, with an in-depth exploration of RIC security, marking the first comprehensive examination of its kind in the literature. Real-world security incidents involving RIC are vividly illustrated, providing practical insights. The study evaluates the security implications of the RIC within the 6G Open RAN context, addressing security vulnerabilities, mitigation strategies, and potential enhancements. It aims to guide stakeholders in the telecom industry toward a secure and dependable telecommunications infrastructure. The article serves as a valuable reference, shedding light on the RIC's crucial role within the broader network infrastructure and emphasizing security's paramount importance. This survey also explores the promising security opportunities that the RIC presents for enhancing network security and resilience in the context of 6G mobile networks. It outlines open issues, lessons learned, and future research directions in the domain of intelligent control in 6G open RAN, facilitating a comprehensive understanding of this dynamic landscape.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

Reinforcement Learning (RL) serves as a versatile framework for sequential decision-making, finding applications across diverse domains such as robotics, autonomous driving, recommendation systems, supply chain optimization, biology, mechanics, and finance. The primary objective in these applications is to maximize the average reward. Real-world scenarios often necessitate adherence to specific constraints during the learning process. This monograph focuses on the exploration of various model-based and model-free approaches for Constrained RL within the context of average reward Markov Decision Processes (MDPs). The investigation commences with an examination of model-based strategies, delving into two foundational methods - optimism in the face of uncertainty and posterior sampling. Subsequently, the discussion transitions to parametrized model-free approaches, where the primal-dual policy gradient-based algorithm is explored as a solution for constrained MDPs. The monograph provides regret guarantees and analyzes constraint violation for each of the discussed setups. For the above exploration, we assume the underlying MDP to be ergodic. Further, this monograph extends its discussion to encompass results tailored for weakly communicating MDPs, thereby broadening the scope of its findings and their relevance to a wider range of practical scenarios.

Numerous advanced Large Language Models (LLMs) now support context lengths up to 128K, and some extend to 200K. Some benchmarks in the generic domain have also followed up on evaluating long-context capabilities. In the medical domain, tasks are distinctive due to the unique contexts and need for domain expertise, necessitating further evaluation. However, despite the frequent presence of long texts in medical scenarios, evaluation benchmarks of long-context capabilities for LLMs in this field are still rare. In this paper, we propose MedOdyssey, the first medical long-context benchmark with seven length levels ranging from 4K to 200K tokens. MedOdyssey consists of two primary components: the medical-context "needles in a haystack" task and a series of tasks specific to medical applications, together comprising 10 datasets. The first component includes challenges such as counter-intuitive reasoning and novel (unknown) facts injection to mitigate knowledge leakage and data contamination of LLMs. The second component confronts the challenge of requiring professional medical expertise. Especially, we design the ``Maximum Identical Context'' principle to improve fairness by guaranteeing that different LLMs observe as many identical contexts as possible. Our experiment evaluates advanced proprietary and open-source LLMs tailored for processing long contexts and presents detailed performance analyses. This highlights that LLMs still face challenges and need for further research in this area. Our code and data are released in the repository: \url{//github.com/JOHNNY-fans/MedOdyssey.}

Data organized in tabular format is ubiquitous in real-world applications, and users often craft tables with biased feature definitions and flexibly set prediction targets of their interests. Thus, a rapid development of a robust, effective, dataset-versatile, user-friendly tabular prediction approach is highly desired. While Gradient Boosting Decision Trees (GBDTs) and existing deep neural networks (DNNs) have been extensively utilized by professional users, they present several challenges for casual users, particularly: (i) the dilemma of model selection due to their different dataset preferences, and (ii) the need for heavy hyperparameter searching, failing which their performances are deemed inadequate. In this paper, we delve into this question: Can we develop a deep learning model that serves as a "sure bet" solution for a wide range of tabular prediction tasks, while also being user-friendly for casual users? We delve into three key drawbacks of deep tabular models, encompassing: (P1) lack of rotational variance property, (P2) large data demand, and (P3) over-smooth solution. We propose ExcelFormer, addressing these challenges through a semi-permeable attention module that effectively constrains the influence of less informative features to break the DNNs' rotational invariance property (for P1), data augmentation approaches tailored for tabular data (for P2), and attentive feedforward network to boost the model fitting capability (for P3). These designs collectively make ExcelFormer a "sure bet" solution for diverse tabular datasets. Extensive and stratified experiments conducted on real-world datasets demonstrate that our model outperforms previous approaches across diverse tabular data prediction tasks, and this framework can be friendly to casual users, offering ease of use without the heavy hyperparameter tuning.

While language models (LMs) have proven remarkably adept at generating code, many programs are challenging for LMs to generate using their parametric knowledge alone. Providing external contexts such as library documentation can facilitate generating accurate and functional code. Despite the success of retrieval-augmented generation (RAG) in various text-oriented tasks, its potential for improving code generation remains under-explored. In this work, we conduct a systematic, large-scale analysis by asking: in what scenarios can retrieval benefit code generation models? and what challenges remain? We first curate a comprehensive evaluation benchmark, CodeRAG-Bench, encompassing three categories of code generation tasks, including basic programming, open-domain, and repository-level problems. We aggregate documents from five sources for models to retrieve contexts: competition solutions, online tutorials, library documentation, StackOverflow posts, and GitHub repositories. We examine top-performing models on CodeRAG-Bench by providing contexts retrieved from one or multiple sources. While notable gains are made in final code generation by retrieving high-quality contexts across various settings, our analysis reveals room for improvement -- current retrievers still struggle to fetch useful contexts especially with limited lexical overlap, and generators fail to improve with limited context lengths or abilities to integrate additional contexts. We hope CodeRAG-Bench serves as an effective testbed to encourage further development of advanced code-oriented RAG methods.

The rapid evolution of Large Language Models (LLMs) has rendered them indispensable in modern society. While security measures are typically to align LLMs with human values prior to release, recent studies have unveiled a concerning phenomenon named "Jailbreak". This term refers to the unexpected and potentially harmful responses generated by LLMs when prompted with malicious questions. Most existing research focus on generating jailbreak prompts but system message configurations vary significantly in experiments. In this paper, we aim to answer a question: Is the system message really important for jailbreaks in LLMs? We conduct experiments in mainstream LLMs to generate jailbreak prompts with varying system messages: short, long, and none. We discover that different system messages have distinct resistances to jailbreaks. Therefore, we explore the transferability of jailbreaks across LLMs with different system messages. Furthermore, we propose the System Messages Evolutionary Algorithm (SMEA) to generate system messages that are more resistant to jailbreak prompts, even with minor changes. Through SMEA, we get a robust system messages population with little change in the length of system messages. Our research not only bolsters LLMs security but also raises the bar for jailbreaks, fostering advancements in this field of study.

This paper introduces AnyTrans, an all-encompassing framework for the task-Translate AnyText in the Image (TATI), which includes multilingual text translation and text fusion within images. Our framework leverages the strengths of large-scale models, such as Large Language Models (LLMs) and text-guided diffusion models, to incorporate contextual cues from both textual and visual elements during translation. The few-shot learning capability of LLMs allows for the translation of fragmented texts by considering the overall context. Meanwhile, the advanced inpainting and editing abilities of diffusion models make it possible to fuse translated text seamlessly into the original image while preserving its style and realism. Additionally, our framework can be constructed entirely using open-source models and requires no training, making it highly accessible and easily expandable. To encourage advancement in the TATI task, we have meticulously compiled a test dataset called MTIT6, which consists of multilingual text image translation data from six language pairs.

Recent advancements in Large Language Models (LLMs) have catalyzed the development of sophisticated frameworks for developing LLM-based agents. However, the complexity of these frameworks r poses a hurdle for nuanced differentiation at a granular level, a critical aspect for enabling efficient implementations across different frameworks and fostering future research. Hence, the primary purpose of this survey is to facilitate a cohesive understanding of diverse recently proposed frameworks by identifying common workflows and reusable LLM-Profiled Components (LMPCs).

Incorporating artificial intelligence (AI) technology, particularly large language models (LLMs), is becoming increasingly vital for developing immersive and interactive metaverse experiences. GPT, a representative LLM developed by OpenAI, is leading LLM development and gaining attention for its potential in building the metaverse. The article delves into the pros and cons of utilizing GPT for metaverse-based education, entertainment, personalization, and support. Dynamic and personalized experiences are possible with this technology, but there are also legitimate privacy, bias, and ethical issues to consider. This article aims to help readers understand the possible influence of GPT, according to its unique technological advantages, on the metaverse and how it may be used to effectively create a more immersive and engaging virtual environment by evaluating these opportunities and obstacles.

The Pretrained Foundation Models (PFMs) are regarded as the foundation for various downstream tasks with different data modalities. A pretrained foundation model, such as BERT, GPT-3, MAE, DALLE-E, and ChatGPT, is trained on large-scale data which provides a reasonable parameter initialization for a wide range of downstream applications. The idea of pretraining behind PFMs plays an important role in the application of large models. Different from previous methods that apply convolution and recurrent modules for feature extractions, the generative pre-training (GPT) method applies Transformer as the feature extractor and is trained on large datasets with an autoregressive paradigm. Similarly, the BERT apples transformers to train on large datasets as a contextual language model. Recently, the ChatGPT shows promising success on large language models, which applies an autoregressive language model with zero shot or few show prompting. With the extraordinary success of PFMs, AI has made waves in a variety of fields over the past few years. Considerable methods, datasets, and evaluation metrics have been proposed in the literature, the need is raising for an updated survey. This study provides a comprehensive review of recent research advancements, current and future challenges, and opportunities for PFMs in text, image, graph, as well as other data modalities. We first review the basic components and existing pretraining in natural language processing, computer vision, and graph learning. We then discuss other advanced PFMs for other data modalities and unified PFMs considering the data quality and quantity. Besides, we discuss relevant research about the fundamentals of the PFM, including model efficiency and compression, security, and privacy. Finally, we lay out key implications, future research directions, challenges, and open problems.

Compared with cheap addition operation, multiplication operation is of much higher computation complexity. The widely-used convolutions in deep neural networks are exactly cross-correlation to measure the similarity between input feature and convolution filters, which involves massive multiplications between float values. In this paper, we present adder networks (AdderNets) to trade these massive multiplications in deep neural networks, especially convolutional neural networks (CNNs), for much cheaper additions to reduce computation costs. In AdderNets, we take the $\ell_1$-norm distance between filters and input feature as the output response. The influence of this new similarity measure on the optimization of neural network have been thoroughly analyzed. To achieve a better performance, we develop a special back-propagation approach for AdderNets by investigating the full-precision gradient. We then propose an adaptive learning rate strategy to enhance the training procedure of AdderNets according to the magnitude of each neuron's gradient. As a result, the proposed AdderNets can achieve 74.9% Top-1 accuracy 91.7% Top-5 accuracy using ResNet-50 on the ImageNet dataset without any multiplication in convolution layer.

北京阿比特科技有限公司