亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We show that the decision problem of determining whether a given (abstract simplicial) $k$-complex has a geometric embedding in $\mathbb R^d$ is complete for the Existential Theory of the Reals for all $d\geq 3$ and $k\in\{d-1,d\}$. This implies that the problem is polynomial time equivalent to determining whether a polynomial equation system has a real root. Moreover, this implies NP-hardness and constitutes the first hardness results for the algorithmic problem of geometric embedding (abstract simplicial) complexes.

相關內容

We consider the numerical taxonomy problem of fitting a positive distance function ${D:{S\choose 2}\rightarrow \mathbb R_{>0}}$ by a tree metric. We want a tree $T$ with positive edge weights and including $S$ among the vertices so that their distances in $T$ match those in $D$. A nice application is in evolutionary biology where the tree $T$ aims to approximate the branching process leading to the observed distances in $D$ [Cavalli-Sforza and Edwards 1967]. We consider the total error, that is the sum of distance errors over all pairs of points. We present a deterministic polynomial time algorithm minimizing the total error within a constant factor. We can do this both for general trees, and for the special case of ultrametrics with a root having the same distance to all vertices in $S$. The problems are APX-hard, so a constant factor is the best we can hope for in polynomial time. The best previous approximation factor was $O((\log n)(\log \log n))$ by Ailon and Charikar [2005] who wrote "Determining whether an $O(1)$ approximation can be obtained is a fascinating question".

Consider an assignment of bits to the vertices of a connected graph $G(V,E)$ with the property that the value of each vertex is a function of the values of its neighbors. A collection of such assignments is called a {\em storage code} of length $|V|$ on $G$. The storage code problem can be equivalently formulated as maximizing the probability of success in a {\em guessing game} on graphs, or constructing {\em index codes} of small rate. If $G$ contains many cliques, it is easy to construct codes of rate close to 1, so a natural problem is to construct high-rate codes on triangle-free graphs, where constructing codes of rate $>1/2$ is a nontrivial task, with few known results. In this work we construct infinite families of linear storage codes with high rate relying on coset graphs of binary linear codes. We also derive necessary conditions for such codes to have high rate, and even rate potentially close to one. We also address correction of multiple erasures in the codeword, deriving recovery guarantees based on expansion properties of the graph. Finally, we point out connections between linear storage codes and quantum CSS codes, a link to bootstrap percolation and contagion spread in graphs, and formulate a number of open problems.

Petri nets, equivalently presentable as vector addition systems with states, are an established model of concurrency with widespread applications. The reachability problem, where we ask whether from a given initial configuration there exists a sequence of valid execution steps reaching a given final configuration, is the central algorithmic problem for this model. The complexity of the problem has remained, until recently, one of the hardest open questions in verification of concurrent systems. A first upper bound has been provided only in 2015 by Leroux and Schmitz, then refined by the same authors to non-primitive recursive Ackermannian upper bound in 2019. The exponential space lower bound, shown by Lipton already in 1976, remained the only known for over 40 years until a breakthrough non-elementary lower bound by Czerwi{\'n}ski, Lasota, Lazic, Leroux and Mazowiecki in 2019. Finally, a matching Ackermannian lower bound announced this year by Czerwi{\'n}ski and Orlikowski, and independently by Leroux, established the complexity of the problem. Our contribution is an improvement of the former construction, making it conceptually simpler and more direct. On the way we improve the lower bound for vector addition systems with states in fixed dimension (or, equivalently, Petri nets with fixed number of places): while Czerwi{\'n}ski and Orlikowski prove $F_k$-hardness (hardness for $k$th level in Grzegorczyk Hierarchy) in dimension $6k$, and Leroux in dimension $4k+5$, our simplified construction yields $F_k$-hardness already in dimension $3k+2$.

LazySets.jl is a Julia library that provides ways to symbolically represent sets of points as geometric shapes, with a special focus on convex sets and polyhedral approximations. LazySets provides methods to apply common set operations, convert between different set representations, and efficiently compute with sets in high dimensions using specialized algorithms based on the set types. LazySets is the core library of JuliaReach, a cutting-edge software addressing the fundamental problem of reachability analysis: computing the set of states that are reachable by a dynamical system from all initial states and for all admissible inputs and parameters. While the library was originally designed for reachability and formal verification, its scope goes beyond such topics. LazySets is an easy-to-use, general-purpose and scalable library for computations that mix symbolics and numerics. In this article we showcase the basic functionality, highlighting some of the key design choices.

Determining the matrix multiplication exponent $\omega$ is one of the greatest open problems in theoretical computer science. We show that it is impossible to prove $\omega = 2$ by starting with structure tensors of modules of fixed degree and using arbitrary restrictions. It implies that the same is impossible by starting with $1_A$-generic non-diagonal tensors of fixed size with minimal border rank. This generalizes the work of Bl\"aser and Lysikov [3]. Our methods come from both commutative algebra and complexity theory.

The Distance Geometry Problem asks for a realization of a given weighted graph in $\mathbb{R}^K$. Two variants of this problem, both originating from protein conformation, are based on a given vertex order (which abstracts the protein backbone). Both variants involve an element of discrete decision in the realization of the next vertex in the order using $K$ preceding (already realized) vertices. The difference between these variants is that one requires the $K$ preceding vertices to be contiguous. The presence of this constraint allows one to prove, via a combinatorial counting of the number of solutions, that the realization algorithm is fixed-parameter tractable. Its absence, on the other hand, makes it possible to efficiently construct the vertex order directly from the graph. Deriving a combinatorial counting method without using the contiguity requirement would therefore be desirable. In this paper we prove that, unfortunately, such a counting method cannot be devised in general.

We consider deterministic algorithms for the well-known hidden subgroup problem ($\mathsf{HSP}$): for a finite group $G$ and a finite set $X$, given a function $f:G \to X$ and the promise that for any $g_1, g_2 \in G, f(g_1) = f(g_2)$ iff $g_1H=g_2H$ for a subgroup $H \le G$, the goal of the decision version is to determine whether $H$ is trivial or not, and the goal of the identification version is to identify $H$. An algorithm for the problem should query $f(g)$ for $g\in G$ at least as possible. Nayak \cite{Nayak2021} asked whether there exist deterministic algorithms with $O(\sqrt{\frac{|G|}{|H|}})$ query complexity for $\mathsf{HSP}$. We answer this problem by proving the following results, which also extend the main results of Ref. [30], since here the algorithms do not rely on any prior knowledge of $H$. (i)When $G$ is a general finite Abelian group, there exist an algorithm with $O(\sqrt{\frac{|G|}{|H|}})$ queries to decide the triviality of $H$ and an algorithm to identify $H$ with $O(\sqrt{\frac{|G|}{|H|}\log |H|}+\log |H|)$ queries. (ii)In general there is no deterministic algorithm for the identification version of $\mathsf{HSP}$ with query complexity of $O(\sqrt{\frac{|G|}{|H|}})$, since there exists an instance of $\mathsf{HSP}$ that needs $\omega(\sqrt{\frac{|G|}{|H|}})$ queries to identify $H$.\footnote{$f(x)$ is said to be $\omega(g(x))$ if for every positive constant $C$, there exists a positive constant $N$ such that for $x>N$, $f(x)\ge C\cdot g(x)$, which means $g$ is a strict lower bound for $f$.} On the other hand, there exist instances of $\mathsf{HSP}$ with query complexity far smaller than $O(\sqrt{\frac{|G|}{|H|}})$, whose query complexity is $O(\log \frac{|G|}{|H|})$ and even $O(1)$.

A palindrome is a string that reads the same forward and backward. A palindromic substring $w$ of a string $T$ is called a minimal unique palindromic substring (MUPS) of $T$ if $w$ occurs only once in $T$ and any proper palindromic substring of $w$ occurs at least twice in $T$. MUPSs are utilized for answering the shortest unique palindromic substring problem, which is motivated by molecular biology [Inoue et al., 2018]. Given a string $T$ of length $n$, all MUPSs of $T$ can be computed in $O(n)$ time. In this paper, we study the problem of updating the set of MUPSs when a character in the input string $T$ is substituted by another character. We first analyze the number $d$ of changes of MUPSs when a character is substituted, and show that $d$ is in $O(\log n)$. Further, we present an algorithm that uses $O(n)$ time and space for preprocessing, and updates the set of MUPSs in $O(\log\sigma + (\log\log n)^2 + d)$ time where $\sigma$ is the alphabet size. We also propose a variant of the algorithm, which runs in optimal $O(1+d)$ time when the alphabet size is constant.

The problem of Approximate Nearest Neighbor (ANN) search is fundamental in computer science and has benefited from significant progress in the past couple of decades. However, most work has been devoted to pointsets whereas complex shapes have not been sufficiently treated. Here, we focus on distance functions between discretized curves in Euclidean space: they appear in a wide range of applications, from road segments to time-series in general dimension. For $\ell_p$-products of Euclidean metrics, for any $p$, we design simple and efficient data structures for ANN, based on randomized projections, which are of independent interest. They serve to solve proximity problems under a notion of distance between discretized curves, which generalizes both discrete Fr\'echet and Dynamic Time Warping distances. These are the most popular and practical approaches to comparing such curves. We offer the first data structures and query algorithms for ANN with arbitrarily good approximation factor, at the expense of increasing space usage and preprocessing time over existing methods. Query time complexity is comparable or significantly improved by our algorithms, our algorithm is especially efficient when the length of the curves is bounded.

We show that for the problem of testing if a matrix $A \in F^{n \times n}$ has rank at most $d$, or requires changing an $\epsilon$-fraction of entries to have rank at most $d$, there is a non-adaptive query algorithm making $\widetilde{O}(d^2/\epsilon)$ queries. Our algorithm works for any field $F$. This improves upon the previous $O(d^2/\epsilon^2)$ bound (SODA'03), and bypasses an $\Omega(d^2/\epsilon^2)$ lower bound of (KDD'14) which holds if the algorithm is required to read a submatrix. Our algorithm is the first such algorithm which does not read a submatrix, and instead reads a carefully selected non-adaptive pattern of entries in rows and columns of $A$. We complement our algorithm with a matching query complexity lower bound for non-adaptive testers over any field. We also give tight bounds of $\widetilde{\Theta}(d^2)$ queries in the sensing model for which query access comes in the form of $\langle X_i, A\rangle:=tr(X_i^\top A)$; perhaps surprisingly these bounds do not depend on $\epsilon$. We next develop a novel property testing framework for testing numerical properties of a real-valued matrix $A$ more generally, which includes the stable rank, Schatten-$p$ norms, and SVD entropy. Specifically, we propose a bounded entry model, where $A$ is required to have entries bounded by $1$ in absolute value. We give upper and lower bounds for a wide range of problems in this model, and discuss connections to the sensing model above.

小貼士
登錄享
相關主題
北京阿比特科技有限公司