Decentralized optimization is increasingly popular in machine learning for its scalability and efficiency. Intuitively, it should also provide better privacy guarantees, as nodes only observe the messages sent by their neighbors in the network graph. But formalizing and quantifying this gain is challenging: existing results are typically limited to Local Differential Privacy (LDP) guarantees that overlook the advantages of decentralization. In this work, we introduce pairwise network differential privacy, a relaxation of LDP that captures the fact that the privacy leakage from a node $u$ to a node $v$ may depend on their relative position in the graph. We then analyze the combination of local noise injection with (simple or randomized) gossip averaging protocols on fixed and random communication graphs. We also derive a differentially private decentralized optimization algorithm that alternates between local gradient descent steps and gossip averaging. Our results show that our algorithms amplify privacy guarantees as a function of the distance between nodes in the graph, matching the privacy-utility trade-off of the trusted curator, up to factors that explicitly depend on the graph topology. Finally, we illustrate our privacy gains with experiments on synthetic and real-world datasets.
Multilevel regression and poststratification (MRP) has become a popular approach for selection bias adjustment in subgroup estimation, with widespread applications from social sciences to public health. We examine the finite population inferential validity of MRP in connection with poststratification and model specification. The success of MRP prominently depends on the availability of auxiliary information strongly related to the outcome. To improve the outcome model fitting performances, we recommend modeling inclusion mechanisms conditional on auxiliary variables and adding flexible functions of estimated inclusion probabilities as predictors in the mean structure. We present a framework for statistical data integration and robust inferences of probability and nonprobability surveys, providing solutions to various challenges in practical applications. Our simulation studies indicate the statistical validity of MRP with a tradeoff between bias and variance, and the improvement over alternative methods is mainly on subgroup estimates with small sample sizes. Our development is motivated by the Adolescent Brain Cognitive Development (ABCD) Study that has collected children's information across 21 U.S. geographic locations for national representation but is subject to selection bias as a nonprobability sample. We apply the methods for population inferences to evaluate the cognition measure of diverse groups of children in the ABCD study and demonstrate that the use of auxiliary variables affects the inferential findings.
Graph learning models are critical tools for researchers to explore graph-structured data. To train a capable graph learning model, a conventional method uses sufficient training data to train a graph model on a single device. However, it is prohibitive to do so in real-world scenarios due to privacy concerns. Federated learning provides a feasible solution to address such limitations via introducing various privacy-preserving mechanisms, such as differential privacy on graph edges. Nevertheless, differential privacy in federated graph learning secures the classified information maintained in graphs. It degrades the performances of the graph learning models. In this paper, we investigate how to implement differential privacy on graph edges and observe the performances decreasing in the experiments. We also note that the differential privacy on graph edges introduces noises to perturb graph proximity, which is one of the graph augmentations in graph contrastive learning. Inspired by that, we propose to leverage the advantages of graph contrastive learning to alleviate the performance dropping caused by differential privacy. Extensive experiments are conducted with several representative graph models and widely-used datasets, showing that contrastive learning indeed alleviates the models' performance dropping caused by differential privacy.
With the development of blockchain applications, the requirements for file storage in blockchain are increasing rapidly. Many protocols, including Filecoin, Arweave, and Sia, have been proposed to provide scalable decentralized file storage for blockchain applications. However, the reliability is not well promised by existing protocols. Inspired by the idea of insurance, we innovatively propose a decentralized file storage protocol in blockchain, named as FileInsurer, to achieve both scalability and reliability. While ensuring scalability by distributed storage, FileInsurer guarantees reliability by enhancing robustness and fully compensating for the file loss. Specifically, under mild conditions, we prove that no more than 0.1\% value of all files should be compensated even if half of the storage collapses. Therefore, only a relatively small deposit needs to be pledged by storage providers to cover the potential file loss. Because of lower burdens of deposit, storage providers have more incentives to participate in the storage network. FileInsurer can run in the top layer of the InterPlanetary File System (IPFS), and thus it can be directly applied in Web 3.0, Non-Fungible Tokens, and Metaverse.
This paper proposes Federated Learning (FL) based smar t healthcare system where Medical Centers (MCs) train the local model using the data collected from patients and send the model weights to the miners in a blockchain-based robust framework without sharing raw data, keeping privacy preservation into deliberation. We formulate an optimization problem by maximizing the utility and minimizing the loss function considering energy consumption and FL process delay of MCs for learning effective models on distributed healthcare data underlying a blockchain-based framework. We propose a solution in two stages: first, offer a stable matching-based association algorithm to maximize the utility of both miners and MCs and then solve loss minimization using Stochastic Gradient Descent (SGD) algorithm employing FL under Differential Privacy (DP) and blockchain technology. Moreover, we incorporate blockchain technology to provide tempered resistant and decentralized model weight sharing in the proposed FL-based framework. The effectiveness of the proposed model is shown through simulation on real-world healthcare data comparing other state-of-the-art techniques.
Motivated by decentralized sensing and policy evaluation problems, we consider a particular type of distributed optimization problem that involves averaging several stochastic, online observations on a network. We design a dual-based method for this consensus problem with Polyak--Ruppert averaging and analyze its behavior. We show that this algorithm attains an accelerated deterministic error depending optimally on the condition number of the network, and also that it has order-optimal stochastic error. This improves on the guarantees of state-of-the-art distributed optimization algorithms when specialized to this setting, and yields -- among other things -- corollaries for decentralized policy evaluation. Our proofs rely on explicitly studying the evolution of several relevant linear systems, and may be of independent interest. Numerical experiments are provided, which validate our theoretical results and demonstrate that our approach outperforms existing methods in finite-sample scenarios on several natural network topologies.
Federated learning (FL) is a privacy-preserving learning paradigm that allows multiple parities to jointly train a powerful machine learning model without sharing their private data. According to the form of collaboration, FL can be further divided into horizontal federated learning (HFL) and vertical federated learning (VFL). In HFL, participants share the same feature space and collaborate on data samples, while in VFL, participants share the same sample IDs and collaborate on features. VFL has a broader scope of applications and is arguably more suitable for joint model training between large enterprises. In this paper, we focus on VFL and investigate potential privacy leakage in real-world VFL frameworks. We design and implement two practical privacy attacks: reverse multiplication attack for the logistic regression VFL protocol; and reverse sum attack for the XGBoost VFL protocol. We empirically show that the two attacks are (1) effective - the adversary can successfully steal the private training data, even when the intermediate outputs are encrypted to protect data privacy; (2) evasive - the attacks do not deviate from the protocol specification nor deteriorate the accuracy of the target model; and (3) easy - the adversary needs little prior knowledge about the data distribution of the target participant. We also show the leaked information is as effective as the raw training data in training an alternative classifier. We further discuss potential countermeasures and their challenges, which we hope can lead to several promising research directions.
Federated learning (FL) enables distributed devices to jointly train a shared model while keeping the training data local. Different from the horizontal FL (HFL) setting where each client has partial data samples, vertical FL (VFL), which allows each client to collect partial features, has attracted intensive research efforts recently. In this paper, we identified two challenges that state-of-the-art VFL frameworks are facing: (1) some works directly average the learned feature embeddings and therefore might lose the unique properties of each local feature set; (2) server needs to communicate gradients with the clients for each training step, incurring high communication cost that leads to rapid consumption of privacy budgets. In this paper, we aim to address the above challenges and propose an efficient VFL with multiple linear heads (VIM) framework, where each head corresponds to local clients by taking the separate contribution of each client into account. In addition, we propose an Alternating Direction Method of Multipliers (ADMM)-based method to solve our optimization problem, which reduces the communication cost by allowing multiple local updates in each step, and thus leads to better performance under differential privacy. We consider various settings including VFL with model splitting and without model splitting. For both settings, we carefully analyze the differential privacy mechanism for our framework. Moreover, we show that a byproduct of our framework is that the weights of learned linear heads reflect the importance of local clients. We conduct extensive evaluations and show that on four real-world datasets, VIM achieves significantly higher performance and faster convergence compared with state-of-the-arts. We also explicitly evaluate the importance of local clients and show that VIM enables functionalities such as client-level explanation and client denoising.
When users exchange data with Unmanned Aerial vehicles - (UAVs) over air-to-ground (A2G) wireless communication networks, they expose the link to attacks that could increase packet loss and might disrupt connectivity. For example, in emergency deliveries, losing control information (i.e data related to the UAV control communication) might result in accidents that cause UAV destruction and damage to buildings or other elements in a city. To prevent these problems, these issues must be addressed in 5G and 6G scenarios. This research offers a deep learning (DL) approach for detecting attacks in UAVs equipped with orthogonal frequency division multiplexing (OFDM) receivers on Clustered Delay Line (CDL) channels in highly complex scenarios involving authenticated terrestrial users, as well as attackers in unknown locations. We use the two observable parameters available in 5G UAV connections: the Received Signal Strength Indicator (RSSI) and the Signal to Interference plus Noise Ratio (SINR). The prospective algorithm is generalizable regarding attack identification, which does not occur during training. Further, it can identify all the attackers in the environment with 20 terrestrial users. A deeper investigation into the timing requirements for recognizing attacks show that after training, the minimum time necessary after the attack begins is 100 ms, and the minimum attack power is 2 dBm, which is the same power that the authenticated UAV uses. Our algorithm also detects moving attackers from a distance of 500 m.
Federated learning (FL) is an emerging, privacy-preserving machine learning paradigm, drawing tremendous attention in both academia and industry. A unique characteristic of FL is heterogeneity, which resides in the various hardware specifications and dynamic states across the participating devices. Theoretically, heterogeneity can exert a huge influence on the FL training process, e.g., causing a device unavailable for training or unable to upload its model updates. Unfortunately, these impacts have never been systematically studied and quantified in existing FL literature. In this paper, we carry out the first empirical study to characterize the impacts of heterogeneity in FL. We collect large-scale data from 136k smartphones that can faithfully reflect heterogeneity in real-world settings. We also build a heterogeneity-aware FL platform that complies with the standard FL protocol but with heterogeneity in consideration. Based on the data and the platform, we conduct extensive experiments to compare the performance of state-of-the-art FL algorithms under heterogeneity-aware and heterogeneity-unaware settings. Results show that heterogeneity causes non-trivial performance degradation in FL, including up to 9.2% accuracy drop, 2.32x lengthened training time, and undermined fairness. Furthermore, we analyze potential impact factors and find that device failure and participant bias are two potential factors for performance degradation. Our study provides insightful implications for FL practitioners. On the one hand, our findings suggest that FL algorithm designers consider necessary heterogeneity during the evaluation. On the other hand, our findings urge system providers to design specific mechanisms to mitigate the impacts of heterogeneity.
As data are increasingly being stored in different silos and societies becoming more aware of data privacy issues, the traditional centralized training of artificial intelligence (AI) models is facing efficiency and privacy challenges. Recently, federated learning (FL) has emerged as an alternative solution and continue to thrive in this new reality. Existing FL protocol design has been shown to be vulnerable to adversaries within or outside of the system, compromising data privacy and system robustness. Besides training powerful global models, it is of paramount importance to design FL systems that have privacy guarantees and are resistant to different types of adversaries. In this paper, we conduct the first comprehensive survey on this topic. Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic. We highlight the intuitions, key techniques as well as fundamental assumptions adopted by various attacks and defenses. Finally, we discuss promising future research directions towards robust and privacy-preserving federated learning.