With the emergence of pretrained vision-language models (VLMs), considerable efforts have been devoted to fine-tuning them for downstream tasks. Despite the progress made in designing efficient fine-tuning methods, such methods require access to the model's parameters, which can be challenging as model owners often opt to provide their models as a black box to safeguard model ownership. This paper proposes a \textbf{C}ollabo\textbf{ra}tive \textbf{F}ine-\textbf{T}uning (\textbf{CraFT}) approach for fine-tuning black-box VLMs to downstream tasks, where one only has access to the input prompts and the output predictions of the model. CraFT comprises two modules, a prompt generation module for learning text prompts and a prediction refinement module for enhancing output predictions in residual style. Additionally, we introduce an auxiliary prediction-consistent loss to promote consistent optimization across these modules. These modules are optimized by a novel collaborative training algorithm. Extensive experiments on few-shot classification over 15 datasets demonstrate the superiority of CraFT. The results show that CraFT achieves a decent gain of about 12\% with 16-shot datasets and only 8,000 queries. Moreover, CraFT trains faster and uses only about 1/80 of the memory footprint for deployment, while sacrificing only 1.62\% compared to the white-box method.
Advancements in vision-language models (VLMs) have propelled the field of computer vision, particularly in the zero-shot learning setting. Despite their promise, the effectiveness of these models often diminishes due to domain shifts in test environments. To address this, we introduce the Test-Time Prototype Shifting (TPS) framework, a pioneering approach designed to adapt VLMs to test datasets using unlabeled test inputs. Our method is based on the notion of modulating per-class prototypes in the shared embedding space. By pre-computing and caching prototypes generated with the pre-trained text encoder, TPS not only facilitates optimization-free prototype reuse for subsequent predictions but also enables seamless integration with current advancements in prompt engineering. At test-time, TPS dynamically learns shift vectors for each prototype based solely on the given test sample, effectively bridging the domain gap and enhancing classification accuracy. A notable aspect of our framework is its significantly reduced memory and computational demands when compared to conventional text-prompt tuning methods. Extensive evaluations across 15 datasets involving natural distribution shifts and cross-dataset generalization demonstrate TPS's superior performance, achieving state-of-the-art results while reducing resource requirements.
Recent advances in large language models (LLMs) demonstrate that their capabilities are comparable, or even superior, to humans in many tasks in natural language processing. Despite this progress, LLMs are still inadequate at social-cognitive reasoning, which humans are naturally good at. Drawing inspiration from psychological research on the links between certain personality traits and Theory-of-Mind (ToM) reasoning, and from prompt engineering research on the hyper-sensitivity of prompts in affecting LLMs capabilities, this study investigates how inducing personalities in LLMs using prompts affects their ToM reasoning capabilities. Our findings show that certain induced personalities can significantly affect the LLMs' reasoning capabilities in three different ToM tasks. In particular, traits from the Dark Triad have a larger variable effect on LLMs like GPT-3.5, Llama 2, and Mistral across the different ToM tasks. We find that LLMs that exhibit a higher variance across personality prompts in ToM also tends to be more controllable in personality tests: personality traits in LLMs like GPT-3.5, Llama 2 and Mistral can be controllably adjusted through our personality prompts. In today's landscape where role-play is a common strategy when using LLMs, our research highlights the need for caution, as models that adopt specific personas with personalities potentially also alter their reasoning abilities in an unexpected manner.
Approximate Bayesian inference based on Laplace approximation and quadrature methods have become increasingly popular for their efficiency at fitting latent Gaussian models (LGM), which encompass popular models such as Bayesian generalized linear models, survival models, and spatio-temporal models. However, many useful models fall under the LGM framework only if some conditioning parameters are fixed, as the design matrix would vary with these parameters otherwise. Such models are termed the conditional LGMs with examples in change-point detection, non-linear regression, etc. Existing methods for fitting conditional LGMs rely on grid search or Markov-chain Monte Carlo (MCMC); both require a large number of evaluations of the unnormalized posterior density of the conditioning parameters. As each evaluation of the density requires fitting a separate LGM, these methods become computationally prohibitive beyond simple scenarios. In this work, we introduce the Bayesian optimization sequential surrogate (BOSS) algorithm, which combines Bayesian optimization with approximate Bayesian inference methods to significantly reduce the computational resources required for fitting conditional LGMs. With orders of magnitude fewer evaluations compared to grid or MCMC methods, Bayesian optimization provides us with sequential design points that capture the majority of the posterior mass of the conditioning parameters, which subsequently yields an accurate surrogate posterior distribution that can be easily normalized. We illustrate the efficiency, accuracy, and practical utility of the proposed method through extensive simulation studies and real-world applications in epidemiology, environmental sciences, and astrophysics.
Following the impressive development of LLMs, vision-language alignment in LLMs is actively being researched to enable multimodal reasoning and visual IO. This direction of research is particularly relevant to medical imaging because medical image analysis and generation consist of reasoning based on a combination of visual features and prior knowledge. Many recent works have focused on training adapter networks that serve as an information bridge between image processing networks and LLMs; but presumably, in order to achieve maximum reasoning potential of LLMs on visual information as well, visual and language features should be allowed to interact more freely. This is especially important in the medical domain because understanding and generating medical images such as chest X-rays (CXR) require not only accurate visual and language-based reasoning but also a more intimate mapping between the two modalities. Thus, taking inspiration from previous work on the transformer and VQ-GAN combination for bidirectional image and text generation, we build upon this approach and develop a method for instruction-tuning an LLM pre-trained only on text to gain vision-language capabilities for medical images. Specifically, we leverage a pretrained LLM's existing question-answering and instruction-following abilities to teach it to understand visual inputs by instructing it to answer questions about image inputs and, symmetrically, output both text and image responses appropriate to a given query by tuning the LLM with diverse tasks that encompass image-based text-generation and text-based image-generation. We show that our model, LLM-CXR, trained in this approach shows better image-text alignment in both CXR understanding and generation tasks while being smaller in size compared to previously developed models that perform a narrower range of tasks. The code is at //github.com/hyn2028/llm-cxr.
The transformative impact of large language models (LLMs) like LLaMA and GPT on natural language processing is countered by their prohibitive computational demands. Pruning has emerged as a pivotal compression strategy, introducing sparsity to enhance both memory and computational efficiency. Yet, traditional global pruning is impractical for LLMs due to scalability issues, while local pruning, despite its efficiency, leads to suboptimal solutions. Addressing these challenges, we propose Adaptive Global Pruning (AdaGP), a novel framework that redefines the global pruning process into manageable, coordinated subproblems, allowing for resource-efficient optimization with global optimality. AdaGP's approach, which conceptualizes LLMs as a chain of modular functions and leverages auxiliary variables for problem decomposition, not only facilitates a pragmatic application on LLMs but also demonstrates significant performance improvements, particularly in high-sparsity regimes where it surpasses current state-of-the-art methods.
The advent of the Transformer architecture has propelled the growth of natural language processing (NLP) models, leading to remarkable achievements in numerous NLP tasks. Yet, the absence of specialized hardware like expansive GPU memory and high-speed interconnects poses challenges for training large-scale models. This makes it daunting for many users to experiment with pre-training and fine-tuning large language models (LLMs). In this study, we introduce \atom, a resilient distributed training framework designed for asynchronous training of vast models in a decentralized setting using cost-effective hardware, including consumer-grade GPUs and Ethernet. Unlike conventional model partitioning methods that distribute sub-models across GPUs, \atom aims to accommodate a complete LLM on one host (peer) through seamlessly model swapping and concurrently trains multiple copies across various peers to optimize training throughput. Through static analysis, \atom identifies the best model partitioning strategy and flawlessly merges model execution with swapping. Key benefits of \atom include: Avoiding the central point of failure found in pipeline parallelism methods. Demonstrating superior performance and scalability compared to closely-integrated pipeline parallelism in slower networks. Our experiments using different GPT-3 model configurations reveal that, in scenarios with suboptimal network connections, \atom can enhance training efficiency up to $20 \times$ when juxtaposed with the state-of-the-art decentralized pipeline parallelism approaches.
The advent of large language models (LLMs) has marked a significant milestone in the realm of artificial intelligence, with their capabilities often matching or surpassing human expertise in various domains. Among these achievements, their adeptness in translation tasks stands out, closely mimicking the intricate and preliminary processes undertaken by human translators to ensure the fidelity and quality of the translated content. Despite the advancements in utilizing LLMs for translating programming code across different languages, the domain of smart contract translation, particularly into languages not previously encountered by the LLM, remains largely unexplored. In our research, we present a pioneering approach, SolMover, which harnesses the synergy of two distinct LLMs within a unified framework. This framework is designed to grasp coding principles and apply this understanding to the translation of code into an unfamiliar language. Our study delves into the capacity of LLMs to mimic human learning processes, offering an in-depth evaluation of our methodology for converting smart contracts written in Solidity to Move, a language with limited resources. The framework employs one LLM to decipher coding conventions for the new language, creating a blueprint for the second LLM, which, lacking planning abilities, possesses coding expertise. The empirical evidence from our experiments suggests that SolMover substantially enhances performance compared to gpt-3.5-turbo-1106, and achieves superior results over competitors such as Palm2 and Mixtral-8x7B-Instruct. Additionally, our analysis highlights the efficacy of our bug mitigation strategy in elevating code quality across all models, even outside the SolMover framework.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
Knowledge enhanced pre-trained language models (K-PLMs) are shown to be effective for many public tasks in the literature but few of them have been successfully applied in practice. To address this problem, we propose K-AID, a systematic approach that includes a low-cost knowledge acquisition process for acquiring domain knowledge, an effective knowledge infusion module for improving model performance, and a knowledge distillation component for reducing the model size and deploying K-PLMs on resource-restricted devices (e.g., CPU) for real-world application. Importantly, instead of capturing entity knowledge like the majority of existing K-PLMs, our approach captures relational knowledge, which contributes to better-improving sentence-level text classification and text matching tasks that play a key role in question answering (QA). We conducted a set of experiments on five text classification tasks and three text matching tasks from three domains, namely E-commerce, Government, and Film&TV, and performed online A/B tests in E-commerce. Experimental results show that our approach is able to achieve substantial improvement on sentence-level question answering tasks and bring beneficial business value in industrial settings.
We propose a novel attention gate (AG) model for medical imaging that automatically learns to focus on target structures of varying shapes and sizes. Models trained with AGs implicitly learn to suppress irrelevant regions in an input image while highlighting salient features useful for a specific task. This enables us to eliminate the necessity of using explicit external tissue/organ localisation modules of cascaded convolutional neural networks (CNNs). AGs can be easily integrated into standard CNN architectures such as the U-Net model with minimal computational overhead while increasing the model sensitivity and prediction accuracy. The proposed Attention U-Net architecture is evaluated on two large CT abdominal datasets for multi-class image segmentation. Experimental results show that AGs consistently improve the prediction performance of U-Net across different datasets and training sizes while preserving computational efficiency. The code for the proposed architecture is publicly available.