The magnetohydrodynamics (MHD) equations are continuum models used in the study of a wide range of plasma physics systems, including the evolution of complex plasma dynamics in tokamak disruptions. However, efficient numerical solution methods for MHD are extremely challenging due to disparate time and length scales, strong hyperbolic phenomena, and nonlinearity. Therefore the development of scalable, implicit MHD algorithms and high-resolution adaptive mesh refinement strategies is of considerable importance. In this work, we develop a high-order stabilized finite-element algorithm for the reduced visco-resistive MHD equations based on the MFEM finite element library (mfem.org). The scheme is fully implicit, solved with the Jacobian-free Newton-Krylov (JFNK) method with a physics-based preconditioning strategy. Our preconditioning strategy is a generalization of the physics-based preconditioning methods in [Chacon, et al, JCP 2002] to adaptive, stabilized finite elements. Algebraic multigrid methods are used to invert sub-block operators to achieve scalability. A parallel adaptive mesh refinement scheme with dynamic load-balancing is implemented to efficiently resolve the multi-scale spatial features of the system. Our implementation uses the MFEM framework, which provides arbitrary-order polynomials and flexible adaptive conforming and non-conforming meshes capabilities. Results demonstrate the accuracy, efficiency, and scalability of the implicit scheme in the presence of large scale disparity. The potential of the AMR approach is demonstrated on an island coalescence problem in the high Lundquist-number regime ($\ge 10^7$) with the successful resolution of plasmoid instabilities and thin current sheets.
Two novel parallel Newton-Krylov Balancing Domain Decomposition by Constraints (BDDC) and Dual-Primal Finite Element Tearing and Interconnecting (FETI-DP) solvers are here constructed, analyzed and tested numerically for implicit time discretizations of the three-dimensional Bidomain system of equations. This model represents the most advanced mathematical description of the cardiac bioelectrical activity and it consists of a degenerate system of two non-linear reaction-diffusion partial differential equations (PDEs), coupled with a stiff system of ordinary differential equations (ODEs). A finite element discretization in space and a segregated implicit discretization in time, based on decoupling the PDEs from the ODEs, yields at each time step the solution of a non-linear algebraic system. The Jacobian linear system at each Newton iteration is solved by a Krylov method, accelerated by BDDC or FETI-DP preconditioners, both augmented with the recently introduced {\em deluxe} scaling of the dual variables. A polylogarithmic convergence rate bound is proven for the resulting parallel Bidomain solvers. Extensive numerical experiments on linux clusters up to two thousands processors confirm the theoretical estimates, showing that the proposed parallel solvers are scalable and quasi-optimal.
This work presents a numerical formulation to model isotropic viscoelastic material behavior for membranes and thin shells. The surface and the shell theory are formulated within a curvilinear coordinate system, which allows the representation of general surfaces and deformations. The kinematics follow from Kirchhoff-Love theory and the discretization makes use of isogeometric shape functions. A multiplicative split of the surface deformation gradient is employed, such that an intermediate surface configuration is introduced. The surface metric and curvature of this intermediate configuration follow from the solution of nonlinear evolution laws - ordinary differential equations (ODEs) - that stem from a generalized viscoelastic solid model. The evolution laws are integrated numerically with the implicit Euler scheme and linearized within the Newton-Raphson scheme of the nonlinear finite element framework. The implementation of surface and bending viscosity is verified with the help of analytical solutions and shows ideal convergence behavior. The chosen numerical examples capture large deformations and typical viscoelasticity behavior, such as creep, relaxation, and strain rate dependence. It is shown that the proposed formulation can also be straightforwardly applied to model boundary viscoelasticity of 3D bodies.
In this paper we get error bounds for fully discrete approximations of infinite horizon problems via the dynamic programming approach. It is well known that considering a time discretization with a positive step size $h$ an error bound of size $h$ can be proved for the difference between the value function (viscosity solution of the Hamilton-Jacobi-Bellman equation corresponding to the infinite horizon) and the value function of the discrete time problem. However, including also a spatial discretization based on elements of size $k$ an error bound of size $O(k/h)$ can be found in the literature for the error between the value functions of the continuous problem and the fully discrete problem. In this paper we revise the error bound of the fully discrete method and prove, under similar assumptions to those of the time discrete case, that the error of the fully discrete case is in fact $O(h+k)$ which gives first order in time and space for the method. This error bound matches the numerical experiments of many papers in the literature in which the behaviour $1/h$ from the bound $O(k/h)$ have not been observed.
We propose a novel framework for learning a low-dimensional representation of data based on nonlinear dynamical systems, which we call dynamical dimension reduction (DDR). In the DDR model, each point is evolved via a nonlinear flow towards a lower-dimensional subspace; the projection onto the subspace gives the low-dimensional embedding. Training the model involves identifying the nonlinear flow and the subspace. Following the equation discovery method, we represent the vector field that defines the flow using a linear combination of dictionary elements, where each element is a pre-specified linear/nonlinear candidate function. A regularization term for the average total kinetic energy is also introduced and motivated by optimal transport theory. We prove that the resulting optimization problem is well-posed and establish several properties of the DDR method. We also show how the DDR method can be trained using a gradient-based optimization method, where the gradients are computed using the adjoint method from optimal control theory. The DDR method is implemented and compared on synthetic and example datasets to other dimension reductions methods, including PCA, t-SNE, and Umap.
Multigrid is a powerful solver for large-scale linear systems arising from discretized partial differential equations. The convergence theory of multigrid methods for symmetric positive definite problems has been well developed over the past decades, while, for nonsymmetric problems, such theory is still not mature. As a foundation for multigrid analysis, two-grid convergence theory plays an important role in motivating multigrid algorithms. Regarding two-grid methods for nonsymmetric problems, most previous works focus on the spectral radius of iteration matrix or rely on convergence measures that are typically difficult to compute in practice. Moreover, the existing results are confined to two-grid methods with exact solution of the coarse-grid system. In this paper, we analyze the convergence of a two-grid method for nonsymmetric positive definite problems (e.g., linear systems arising from the discretizations of convection-diffusion equations). In the case of exact coarse solver, we establish an elegant identity for characterizing two-grid convergence factor, which is measured by a smoother-induced norm. The identity can be conveniently used to derive a class of optimal restriction operators and analyze how the convergence factor is influenced by restriction. More generally, we present some convergence estimates for an inexact variant of the two-grid method, in which both linear and nonlinear coarse solvers are considered.
Convection-diffusion-reaction equations model the conservation of scalar quantities. From the analytic point of view, solution of these equations satisfy under certain conditions maximum principles, which represent physical bounds of the solution. That the same bounds are respected by numerical approximations of the solution is often of utmost importance in practice. The mathematical formulation of this property, which contributes to the physical consistency of a method, is called Discrete Maximum Principle (DMP). In many applications, convection dominates diffusion by several orders of magnitude. It is well known that standard discretizations typically do not satisfy the DMP in this convection-dominated regime. In fact, in this case, it turns out to be a challenging problem to construct discretizations that, on the one hand, respect the DMP and, on the other hand, compute accurate solutions. This paper presents a survey on finite element methods, with a main focus on the convection-dominated regime, that satisfy a local or a global DMP. The concepts of the underlying numerical analysis are discussed. The survey reveals that for the steady-state problem there are only a few discretizations, all of them nonlinear, that at the same time satisfy the DMP and compute reasonably accurate solutions, e.g., algebraically stabilized schemes. Moreover, most of these discretizations have been developed in recent years, showing the enormous progress that has been achieved lately. Methods based on algebraic stabilization, nonlinear and linear ones, are currently as well the only finite element methods that combine the satisfaction of the global DMP and accurate numerical results for the evolutionary equations in the convection-dominated situation.
Recent advances in computer vision has led to a growth of interest in deploying visual analytics model on mobile devices. However, most mobile devices have limited computing power, which prohibits them from running large scale visual analytics neural networks. An emerging approach to solve this problem is to offload the computation of these neural networks to computing resources at an edge server. Efficient computation offloading requires optimizing the trade-off between multiple objectives including compressed data rate, analytics performance, and computation speed. In this work, we consider a "split computation" system to offload a part of the computation of the YOLO object detection model. We propose a learnable feature compression approach to compress the intermediate YOLO features with light-weight computation. We train the feature compression and decompression module together with the YOLO model to optimize the object detection accuracy under a rate constraint. Compared to baseline methods that apply either standard image compression or learned image compression at the mobile and perform image decompression and YOLO at the edge, the proposed system achieves higher detection accuracy at the low to medium rate range. Furthermore, the proposed system requires substantially lower computation time on the mobile device with CPU only.
Synthesis of ergodic, stationary visual patterns is widely applicable in texturing, shape modeling, and digital content creation. The wide applicability of this technique thus requires the pattern synthesis approaches to be scalable, diverse, and authentic. In this paper, we propose an exemplar-based visual pattern synthesis framework that aims to model the inner statistics of visual patterns and generate new, versatile patterns that meet the aforementioned requirements. To this end, we propose an implicit network based on generative adversarial network (GAN) and periodic encoding, thus calling our network the Implicit Periodic Field Network (IPFN). The design of IPFN ensures scalability: the implicit formulation directly maps the input coordinates to features, which enables synthesis of arbitrary size and is computationally efficient for 3D shape synthesis. Learning with a periodic encoding scheme encourages diversity: the network is constrained to model the inner statistics of the exemplar based on spatial latent codes in a periodic field. Coupled with continuously designed GAN training procedures, IPFN is shown to synthesize tileable patterns with smooth transitions and local variations. Last but not least, thanks to both the adversarial training technique and the encoded Fourier features, IPFN learns high-frequency functions that produce authentic, high-quality results. To validate our approach, we present novel experimental results on various applications in 2D texture synthesis and 3D shape synthesis.
As a crucial component of most modern deep recommender systems, feature embedding maps high-dimensional sparse user/item features into low-dimensional dense embeddings. However, these embeddings are usually assigned a unified dimension, which suffers from the following issues: (1) high memory usage and computation cost. (2) sub-optimal performance due to inferior dimension assignments. In order to alleviate the above issues, some works focus on automated embedding dimension search by formulating it as hyper-parameter optimization or embedding pruning problems. However, they either require well-designed search space for hyperparameters or need time-consuming optimization procedures. In this paper, we propose a Single-Shot Embedding Dimension Search method, called SSEDS, which can efficiently assign dimensions for each feature field via a single-shot embedding pruning operation while maintaining the recommendation accuracy of the model. Specifically, it introduces a criterion for identifying the importance of each embedding dimension for each feature field. As a result, SSEDS could automatically obtain mixed-dimensional embeddings by explicitly reducing redundant embedding dimensions based on the corresponding dimension importance ranking and the predefined parameter budget. Furthermore, the proposed SSEDS is model-agnostic, meaning that it could be integrated into different base recommendation models. The extensive offline experiments are conducted on two widely used public datasets for CTR prediction tasks, and the results demonstrate that SSEDS can still achieve strong recommendation performance even if it has reduced 90\% parameters. Moreover, SSEDS has also been deployed on the WeChat Subscription platform for practical recommendation services. The 7-day online A/B test results show that SSEDS can significantly improve the performance of the online recommendation model.
We present a pipelined multiplier with reduced activities and minimized interconnect based on online digit-serial arithmetic. The working precision has been truncated such that $p<n$ bits are used to compute $n$ bits product, resulting in significant savings in area and power. The digit slices follow variable precision according to input, increasing upto $p$ and then decreases according to the error profile. Pipelining has been done to achieve high throughput and low latency which is desirable for compute intensive inner products. Synthesis results of the proposed designs have been presented and compared with the non-pipelined online multiplier, pipelined online multiplier with full working precision and conventional serial-parallel and array multipliers. For $8, 16, 24$ and $32$ bit precision, the proposed low power pipelined design show upto $38\%$ and $44\%$ reduction in power and area respectively compared to the pipelined online multiplier without working precision truncation.