We propose a two-stage approach for training a single NMT model to translate unseen languages both to and from English. For the first stage, we initialize an encoder-decoder model to pretrained XLM-R and RoBERTa weights, then perform multilingual fine-tuning on parallel data in 40 languages to English. We find this model can generalize to zero-shot translations on unseen languages. For the second stage, we leverage this generalization ability to generate synthetic parallel data from monolingual datasets, then train with successive rounds of bidirectional back-translation. We term our approach EcXTra ({E}nglish-{c}entric Crosslingual ({X}) {Tra}nsfer). Our approach is conceptually simple, only using a standard cross-entropy objective throughout, and also is data-driven, sequentially leveraging auxiliary parallel data and monolingual data. We evaluate our unsupervised NMT results on 7 low-resource languages, and find that each round of back-translation training further refines bidirectional performance. Our final single EcXTra-trained model achieves competitive translation performance in all translation directions, notably establishing a new state-of-the-art for English-to-Kazakh (22.9 > 10.4 BLEU).
End-to-end spoken language understanding (SLU) remains elusive even with current large pretrained language models on text and speech, especially in multilingual cases. Machine translation has been established as a powerful pretraining objective on text as it enables the model to capture high-level semantics of the input utterance and associations between different languages, which is desired for speech models that work on lower-level acoustic frames. Motivated particularly by the task of cross-lingual SLU, we demonstrate that the task of speech translation (ST) is a good means of pretraining speech models for end-to-end SLU on both monolingual and cross-lingual scenarios. By introducing ST, our models give higher performance over current baselines on monolingual and multilingual intent classification as well as spoken question answering using SLURP, MINDS-14, and NMSQA benchmarks. To verify the effectiveness of our methods, we also release two new benchmark datasets from both synthetic and real sources, for the tasks of abstractive summarization from speech and low-resource or zero-shot transfer from English to French. We further show the value of preserving knowledge from the pretraining task, and explore Bayesian transfer learning on pretrained speech models based on continual learning regularizers for that.
In this work, we explore a Multilingual Information Retrieval (MLIR) task, where the collection includes documents in multiple languages. We demonstrate that applying state-of-the-art approaches developed for cross-lingual information retrieval to MLIR tasks leads to sub-optimal performance. This is due to the heterogeneous and imbalanced nature of multilingual collections -- some languages are better represented in the collection and some benefit from large-scale training data. To address this issue, we present KD-SPD, a novel soft prompt decoding approach for MLIR that implicitly "translates" the representation of documents in different languages into the same embedding space. To address the challenges of data scarcity and imbalance, we introduce a knowledge distillation strategy. The teacher model is trained on rich English retrieval data, and by leveraging bi-text data, our distillation framework transfers its retrieval knowledge to the multilingual document encoder. Therefore, our approach does not require any multilingual retrieval training data. Extensive experiments on three MLIR datasets with a total of 15 languages demonstrate that KD-SPD significantly outperforms competitive baselines in all cases. We conduct extensive analyses to show that our method has less language bias and better zero-shot transfer ability towards new languages.
The success of end-to-end speech-to-text translation (ST) is often achieved by utilizing source transcripts, e.g., by pre-training with automatic speech recognition (ASR) and machine translation (MT) tasks, or by introducing additional ASR and MT data. Unfortunately, transcripts are only sometimes available since numerous unwritten languages exist worldwide. In this paper, we aim to utilize large amounts of target-side monolingual data to enhance ST without transcripts. Motivated by the remarkable success of back translation in MT, we develop a back translation algorithm for ST (BT4ST) to synthesize pseudo ST data from monolingual target data. To ease the challenges posed by short-to-long generation and one-to-many mapping, we introduce self-supervised discrete units and achieve back translation by cascading a target-to-unit model and a unit-to-speech model. With our synthetic ST data, we achieve an average boost of 2.3 BLEU on MuST-C En-De, En-Fr, and En-Es datasets. More experiments show that our method is especially effective in low-resource scenarios.
Relation extraction (RE) is a fundamental task in information extraction, whose extension to multilingual settings has been hindered by the lack of supervised resources comparable in size to large English datasets such as TACRED (Zhang et al., 2017). To address this gap, we introduce the MultiTACRED dataset, covering 12 typologically diverse languages from 9 language families, which is created by machine-translating TACRED instances and automatically projecting their entity annotations. We analyze translation and annotation projection quality, identify error categories, and experimentally evaluate fine-tuned pretrained mono- and multilingual language models in common transfer learning scenarios. Our analyses show that machine translation is a viable strategy to transfer RE instances, with native speakers judging more than 83% of the translated instances to be linguistically and semantically acceptable. We find monolingual RE model performance to be comparable to the English original for many of the target languages, and that multilingual models trained on a combination of English and target language data can outperform their monolingual counterparts. However, we also observe a variety of translation and annotation projection errors, both due to the MT systems and linguistic features of the target languages, such as pronoun-dropping, compounding and inflection, that degrade dataset quality and RE model performance.
Multilingual machine translation models can benefit from synergy between different language pairs, but also suffer from interference. While there is a growing number of sophisticated methods that aim to eliminate interference, our understanding of interference as a phenomenon is still limited. This work identifies the main factors that contribute to interference in multilingual machine translation. Through systematic experimentation, we find that interference (or synergy) are primarily determined by model size, data size, and the proportion of each language pair within the total dataset. We observe that substantial interference occurs mainly when the model is very small with respect to the available training data, and that using standard transformer configurations with less than one billion parameters largely alleviates interference and promotes synergy. Moreover, we show that tuning the sampling temperature to control the proportion of each language pair in the data is key to balancing the amount of interference between low and high resource language pairs effectively, and can lead to superior performance overall.
Adapters have been positioned as a parameter-efficient fine-tuning (PEFT) approach, whereby a minimal number of parameters are added to the model and fine-tuned. However, adapters have not been sufficiently analyzed to understand if PEFT translates to benefits in training/deployment efficiency and maintainability/extensibility. Through extensive experiments on many adapters, tasks, and languages in supervised and cross-lingual zero-shot settings, we clearly show that for Natural Language Understanding (NLU) tasks, the parameter efficiency in adapters does not translate to efficiency gains compared to full fine-tuning of models. More precisely, adapters are relatively expensive to train and have slightly higher deployment latency. Furthermore, the maintainability/extensibility benefits of adapters can be achieved with simpler approaches like multi-task training via full fine-tuning, which also provide relatively faster training times. We, therefore, recommend that for moderately sized models for NLU tasks, practitioners should rely on full fine-tuning or multi-task training rather than using adapters. Our code is available at //github.com/AI4Bharat/adapter-efficiency.
Most of the speech translation models heavily rely on parallel data, which is hard to collect especially for low-resource languages. To tackle this issue, we propose to build a cascaded speech translation system without leveraging any kind of paired data. We use fully unpaired data to train our unsupervised systems and evaluate our results on CoVoST 2 and CVSS. The results show that our work is comparable with some other early supervised methods in some language pairs. While cascaded systems always suffer from severe error propagation problems, we proposed denoising back-translation (DBT), a novel approach to building robust unsupervised neural machine translation (UNMT). DBT successfully increases the BLEU score by 0.7--0.9 in all three translation directions. Moreover, we simplified the pipeline of our cascaded system to reduce inference latency and conducted a comprehensive analysis of every part of our work. We also demonstrate our unsupervised speech translation results on the established website.
The multilingual neural machine translation (NMT) model has a promising capability of zero-shot translation, where it could directly translate between language pairs unseen during training. For good transfer performance from supervised directions to zero-shot directions, the multilingual NMT model is expected to learn universal representations across different languages. This paper introduces a cross-lingual consistency regularization, CrossConST, to bridge the representation gap among different languages and boost zero-shot translation performance. The theoretical analysis shows that CrossConST implicitly maximizes the probability distribution for zero-shot translation, and the experimental results on both low-resource and high-resource benchmarks show that CrossConST consistently improves the translation performance. The experimental analysis also proves that CrossConST could close the sentence representation gap and better align the representation space. Given the universality and simplicity of CrossConST, we believe it can serve as a strong baseline for future multilingual NMT research.
Since hardware resources are limited, the objective of training deep learning models is typically to maximize accuracy subject to the time and memory constraints of training and inference. We study the impact of model size in this setting, focusing on Transformer models for NLP tasks that are limited by compute: self-supervised pretraining and high-resource machine translation. We first show that even though smaller Transformer models execute faster per iteration, wider and deeper models converge in significantly fewer steps. Moreover, this acceleration in convergence typically outpaces the additional computational overhead of using larger models. Therefore, the most compute-efficient training strategy is to counterintuitively train extremely large models but stop after a small number of iterations. This leads to an apparent trade-off between the training efficiency of large Transformer models and the inference efficiency of small Transformer models. However, we show that large models are more robust to compression techniques such as quantization and pruning than small models. Consequently, one can get the best of both worlds: heavily compressed, large models achieve higher accuracy than lightly compressed, small models.
Language model pre-training has proven to be useful in learning universal language representations. As a state-of-the-art language model pre-training model, BERT (Bidirectional Encoder Representations from Transformers) has achieved amazing results in many language understanding tasks. In this paper, we conduct exhaustive experiments to investigate different fine-tuning methods of BERT on text classification task and provide a general solution for BERT fine-tuning. Finally, the proposed solution obtains new state-of-the-art results on eight widely-studied text classification datasets.