In this work, we examine a network of agents operating asynchronously, aiming to discover an ideal global model that suits individual local datasets. Our assumption is that each agent independently chooses when to participate throughout the algorithm and the specific subset of its neighbourhood with which it will cooperate at any given moment. When an agent chooses to take part, it undergoes multiple local updates before conveying its outcomes to the sub-sampled neighbourhood. Under this setup, we prove that the resulting asynchronous diffusion strategy is stable in the mean-square error sense and provide performance guarantees specifically for the federated learning setting. We illustrate the findings with numerical simulations.
In this work, we tackle the problem of unsupervised domain adaptation (UDA) for video action recognition. Our approach, which we call UNITE, uses an image teacher model to adapt a video student model to the target domain. UNITE first employs self-supervised pre-training to promote discriminative feature learning on target domain videos using a teacher-guided masked distillation objective. We then perform self-training on masked target data, using the video student model and image teacher model together to generate improved pseudolabels for unlabeled target videos. Our self-training process successfully leverages the strengths of both models to achieve strong transfer performance across domains. We evaluate our approach on multiple video domain adaptation benchmarks and observe significant improvements upon previously reported results.
In this study, we use Genetic Programming (GP) to compose new optimization benchmark functions. Optimization benchmarks have the important role of showing the differences between evolutionary algorithms, making it possible for further analysis and comparisons. We show that the benchmarks generated by GP are able to differentiate algorithms better than human-made benchmark functions. The fitness measure of the GP is the Wasserstein distance of the solutions found by a pair of optimizers. Additionally, we use MAP-Elites to both enhance the search power of the GP and also illustrate how the difference between optimizers changes by various landscape features. Our approach provides a novel way to automate the design of benchmark functions and to compare evolutionary algorithms.
We propose a framework for probabilistic forecasting of dynamical systems based on generative modeling. Given observations of the system state over time, we formulate the forecasting problem as sampling from the conditional distribution of the future system state given its current state. To this end, we leverage the framework of stochastic interpolants, which facilitates the construction of a generative model between an arbitrary base distribution and the target. We design a fictitious, non-physical stochastic dynamics that takes as initial condition the current system state and produces as output a sample from the target conditional distribution in finite time and without bias. This process therefore maps a point mass centered at the current state onto a probabilistic ensemble of forecasts. We prove that the drift coefficient entering the stochastic differential equation (SDE) achieving this task is non-singular, and that it can be learned efficiently by square loss regression over the time-series data. We show that the drift and the diffusion coefficients of this SDE can be adjusted after training, and that a specific choice that minimizes the impact of the estimation error gives a F\"ollmer process. We highlight the utility of our approach on several complex, high-dimensional forecasting problems, including stochastically forced Navier-Stokes and video prediction on the KTH and CLEVRER datasets.
In this paper, we propose a multi-task representation learning framework to jointly estimate the identity, gender and age of individuals from their hand images for the purpose of criminal investigations since the hand images are often the only available information in cases of serious crime such as sexual abuse. We investigate different up-to-date deep learning architectures and compare their performance for joint estimation of identity, gender and age from hand images of perpetrators of serious crime. To simplify the age prediction, we create age groups for the age estimation. We make extensive evaluations and comparisons of both convolution-based and transformer-based deep learning architectures on a publicly available 11k hands dataset. Our experimental analysis shows that it is possible to efficiently estimate not only identity but also other attributes such as gender and age of suspects jointly from hand images for criminal investigations, which is crucial in assisting international police forces in the court to identify and convict abusers.
Confidence bounds are an essential tool for rigorously quantifying the uncertainty of predictions. In this capacity, they can inform the exploration-exploitation trade-off and form a core component in many sequential learning and decision-making algorithms. Tighter confidence bounds give rise to algorithms with better empirical performance and better performance guarantees. In this work, we use martingale tail bounds and finite-dimensional reformulations of infinite-dimensional convex programs to establish new confidence bounds for sequential kernel regression. We prove that our new confidence bounds are always tighter than existing ones in this setting. We apply our confidence bounds to the kernel bandit problem, where future actions depend on the previous history. When our confidence bounds replace existing ones, the KernelUCB (GP-UCB) algorithm has better empirical performance, a matching worst-case performance guarantee and comparable computational cost. Our new confidence bounds can be used as a generic tool to design improved algorithms for other kernelised learning and decision-making problems.
We approach the challenge of addressing semi-supervised domain generalization (SSDG). Specifically, our aim is to obtain a model that learns domain-generalizable features by leveraging a limited subset of labelled data alongside a substantially larger pool of unlabeled data. Existing domain generalization (DG) methods which are unable to exploit unlabeled data perform poorly compared to semi-supervised learning (SSL) methods under SSDG setting. Nevertheless, SSL methods have considerable room for performance improvement when compared to fully-supervised DG training. To tackle this underexplored, yet highly practical problem of SSDG, we make the following core contributions. First, we propose a feature-based conformity technique that matches the posterior distributions from the feature space with the pseudo-label from the model's output space. Second, we develop a semantics alignment loss to learn semantically-compatible representations by regularizing the semantic structure in the feature space. Our method is plug-and-play and can be readily integrated with different SSL-based SSDG baselines without introducing any additional parameters. Extensive experimental results across five challenging DG benchmarks with four strong SSL baselines suggest that our method provides consistent and notable gains in two different SSDG settings.
With the development of multimedia applications, multimodal recommendations are playing an essential role, as they can leverage rich contexts beyond user interactions. Existing methods mainly regard multimodal information as an auxiliary, using them to help learn ID features; however, there exist semantic gaps among multimodal content features and ID features, for which directly using multimodal information as an auxiliary would lead to misalignment in representations of users and items. In this paper, we first systematically investigate the misalignment issue in multimodal recommendations, and propose a solution named AlignRec. In AlignRec, the recommendation objective is decomposed into three alignments, namely alignment within contents, alignment between content and categorical ID, and alignment between users and items. Each alignment is characterized by a specific objective function and is integrated into our multimodal recommendation framework. To effectively train our AlignRec, we propose starting from pre-training the first alignment to obtain unified multimodal features and subsequently training the following two alignments together with these features as input. As it is essential to analyze whether each multimodal feature helps in training, we design three new classes of metrics to evaluate intermediate performance. Our extensive experiments on three real-world datasets consistently verify the superiority of AlignRec compared to nine baselines. We also find that the multimodal features generated by AlignRec are better than currently used ones, which are to be open-sourced.
In this paper, we approach the problem of uncertainty quantification in deep learning through a predictive framework, which captures uncertainty in model parameters by specifying our assumptions about the predictive distribution of unseen future data. Under this view, we show that deep ensembling (Lakshminarayanan et al., 2017) is a fundamentally mis-specified model class, since it assumes that future data are supported on existing observations only -- a situation rarely encountered in practice. To address this limitation, we propose MixupMP, a method that constructs a more realistic predictive distribution using popular data augmentation techniques. MixupMP operates as a drop-in replacement for deep ensembles, where each ensemble member is trained on a random simulation from this predictive distribution. Grounded in the recently-proposed framework of Martingale posteriors (Fong et al., 2023), MixupMP returns samples from an implicitly defined Bayesian posterior. Our empirical analysis showcases that MixupMP achieves superior predictive performance and uncertainty quantification on various image classification datasets, when compared with existing Bayesian and non-Bayesian approaches.
In this paper, we propose a deep reinforcement learning framework called GCOMB to learn algorithms that can solve combinatorial problems over large graphs. GCOMB mimics the greedy algorithm in the original problem and incrementally constructs a solution. The proposed framework utilizes Graph Convolutional Network (GCN) to generate node embeddings that predicts the potential nodes in the solution set from the entire node set. These embeddings enable an efficient training process to learn the greedy policy via Q-learning. Through extensive evaluation on several real and synthetic datasets containing up to a million nodes, we establish that GCOMB is up to 41% better than the state of the art, up to seven times faster than the greedy algorithm, robust and scalable to large dynamic networks.
In this paper, we present a new method for detecting road users in an urban environment which leads to an improvement in multiple object tracking. Our method takes as an input a foreground image and improves the object detection and segmentation. This new image can be used as an input to trackers that use foreground blobs from background subtraction. The first step is to create foreground images for all the frames in an urban video. Then, starting from the original blobs of the foreground image, we merge the blobs that are close to one another and that have similar optical flow. The next step is extracting the edges of the different objects to detect multiple objects that might be very close (and be merged in the same blob) and to adjust the size of the original blobs. At the same time, we use the optical flow to detect occlusion of objects that are moving in opposite directions. Finally, we make a decision on which information we keep in order to construct a new foreground image with blobs that can be used for tracking. The system is validated on four videos of an urban traffic dataset. Our method improves the recall and precision metrics for the object detection task compared to the vanilla background subtraction method and improves the CLEAR MOT metrics in the tracking tasks for most videos.