亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The Private Proof of Solvency is a groundbreaking solution in the realm of Proof of Solvency, offering a secure, efficient, and privacy-preserving method for crypto custody providers such as centralized cryptocurrency exchanges or enterprise custody providers. By leveraging the inherent state concept of every blockchain and pioneering cryptographic techniques like zkp, our approach ensures businesses can prove their reserves without revealing their transactions, addresses, or the total amount of liabilities.

相關內容

Since its introduction, the partial information decomposition (PID) has emerged as a powerful, information-theoretic technique useful for studying the structure of (potentially higher-order) interactions in complex systems. Despite its utility, the applicability of the PID is restricted by the need to assign elements as either inputs or targets, as well as the specific structure of the mutual information itself. Here, we introduce a generalized information decomposition that relaxes the source/target distinction while still satisfying the basic intuitions about information. This approach is based on the decomposition of the Kullback-Leibler divergence, and consequently allows for the analysis of any information gained when updating from an arbitrary prior to an arbitrary posterior. Consequently, any information-theoretic measure that can be written in as a Kullback-Leibler divergence admits a decomposition in the style of Williams and Beer, including the total correlation, the negentropy, and the mutual information as special cases. In this paper, we explore how the generalized information decomposition can reveal novel insights into existing measures, as well as the nature of higher-order synergies. We show that synergistic information is intimately related to the well-known Tononi-Sporns-Edelman (TSE) complexity, and that synergistic information requires a similar integration/segregation balance as a high TSE complexity. Finally, we end with a discussion of how this approach fits into other attempts to generalize the PID and the possibilities for empirical applications.

We present a comprehensive Bayesian approach to paleodemography, emphasizing the proper handling of uncertainties. We then apply that framework to survey data from Cyprus, and quantify the uncertainties in the paleodemographic estimates to demonstrate the applicability of the Bayesian approach and to show the large uncertainties present in current paleodemographic models and data. We also discuss methods to reduce the uncertainties and improve the efficacy of paleodemographic models.

In a representative democracy, the electoral process involves partitioning geographical space into districts which each elect a single representative. These representatives craft and vote on legislation, incentivizing political parties to win as many districts as possible (ideally a plurality). Gerrymandering is the process by which district boundaries are manipulated to the advantage of a desired candidate or party. We study the parameterized complexity of Gerrymandering, a graph problem (as opposed to Euclidean space) formalized by Cohen-Zemach et al. (AAMAS 2018) and Ito et al. (AAMAS 2019) where districts partition vertices into connected subgraphs. We prove that Unit Weight Gerrymandering is W[2]-hard on trees (even when the depth is two) with respect to the number of districts $k$. Moreover, we show that Unit Weight Gerrymandering remains W[2]-hard in trees with $\ell$ leaves with respect to the combined parameter $k+\ell$. In contrast, Gupta et al. (SAGT 2021) give an FPT algorithm for Gerrymandering on paths with respect to $k$. To complement our results and fill this gap, we provide an algorithm to solve Gerrymandering that is FPT in $k$ when $\ell$ is a fixed constant.

Quantum data access and quantum processing can make certain classically intractable learning tasks feasible. However, quantum capabilities will only be available to a select few in the near future. Thus, reliable schemes that allow classical clients to delegate learning to untrusted quantum servers are required to facilitate widespread access to quantum learning advantages. Building on a recently introduced framework of interactive proof systems for classical machine learning, we develop a framework for classical verification of quantum learning. We exhibit learning problems that a classical learner cannot efficiently solve on their own, but that they can efficiently and reliably solve when interacting with an untrusted quantum prover. Concretely, we consider the problems of agnostic learning parities and Fourier-sparse functions with respect to distributions with uniform input marginal. We propose a new quantum data access model that we call "mixture-of-superpositions" quantum examples, based on which we give efficient quantum learning algorithms for these tasks. Moreover, we prove that agnostic quantum parity and Fourier-sparse learning can be efficiently verified by a classical verifier with only random example or statistical query access. Finally, we showcase two general scenarios in learning and verification in which quantum mixture-of-superpositions examples do not lead to sample complexity improvements over classical data. Our results demonstrate that the potential power of quantum data for learning tasks, while not unlimited, can be utilized by classical agents through interaction with untrusted quantum entities.

In recent years there has been a dramatic increase in the number of malware attacks that use encrypted HTTP traffic for self-propagation or communication. Antivirus software and firewalls typically will not have access to encryption keys, and therefore direct detection of malicious encrypted data is unlikely to succeed. However, previous work has shown that traffic analysis can provide indications of malicious intent, even in cases where the underlying data remains encrypted. In this paper, we apply three machine learning techniques to the problem of distinguishing malicious encrypted HTTP traffic from benign encrypted traffic and obtain results comparable to previous work. We then consider the problem of feature analysis in some detail. Previous work has often relied on human expertise to determine the most useful and informative features in this problem domain. We demonstrate that such feature-related information can be obtained directly from machine learning models themselves. We argue that such a machine learning based approach to feature analysis is preferable, as it is more reliable, and we can, for example, uncover relatively unintuitive interactions between features.

DNS, one of the fundamental protocols of the TCP/IP stack, has evolved over the years to protect against threats and attacks. This study examines the risks associated with DNS and explores recent advancements that contribute towards making the DNS ecosystem resilient against various attacks while safeguarding user privacy.

Large Language Models (LLMs) have shown excellent generalization capabilities that have led to the development of numerous models. These models propose various new architectures, tweaking existing architectures with refined training strategies, increasing context length, using high-quality training data, and increasing training time to outperform baselines. Analyzing new developments is crucial for identifying changes that enhance training stability and improve generalization in LLMs. This survey paper comprehensively analyses the LLMs architectures and their categorization, training strategies, training datasets, and performance evaluations and discusses future research directions. Moreover, the paper also discusses the basic building blocks and concepts behind LLMs, followed by a complete overview of LLMs, including their important features and functions. Finally, the paper summarizes significant findings from LLM research and consolidates essential architectural and training strategies for developing advanced LLMs. Given the continuous advancements in LLMs, we intend to regularly update this paper by incorporating new sections and featuring the latest LLM models.

Emotion recognition in conversation (ERC) aims to detect the emotion label for each utterance. Motivated by recent studies which have proven that feeding training examples in a meaningful order rather than considering them randomly can boost the performance of models, we propose an ERC-oriented hybrid curriculum learning framework. Our framework consists of two curricula: (1) conversation-level curriculum (CC); and (2) utterance-level curriculum (UC). In CC, we construct a difficulty measurer based on "emotion shift" frequency within a conversation, then the conversations are scheduled in an "easy to hard" schema according to the difficulty score returned by the difficulty measurer. For UC, it is implemented from an emotion-similarity perspective, which progressively strengthens the model's ability in identifying the confusing emotions. With the proposed model-agnostic hybrid curriculum learning strategy, we observe significant performance boosts over a wide range of existing ERC models and we are able to achieve new state-of-the-art results on four public ERC datasets.

Recently, a considerable literature has grown up around the theme of Graph Convolutional Network (GCN). How to effectively leverage the rich structural information in complex graphs, such as knowledge graphs with heterogeneous types of entities and relations, is a primary open challenge in the field. Most GCN methods are either restricted to graphs with a homogeneous type of edges (e.g., citation links only), or focusing on representation learning for nodes only instead of jointly propagating and updating the embeddings of both nodes and edges for target-driven objectives. This paper addresses these limitations by proposing a novel framework, namely the Knowledge Embedding based Graph Convolutional Network (KE-GCN), which combines the power of GCNs in graph-based belief propagation and the strengths of advanced knowledge embedding (a.k.a. knowledge graph embedding) methods, and goes beyond. Our theoretical analysis shows that KE-GCN offers an elegant unification of several well-known GCN methods as specific cases, with a new perspective of graph convolution. Experimental results on benchmark datasets show the advantageous performance of KE-GCN over strong baseline methods in the tasks of knowledge graph alignment and entity classification.

Deep Convolutional Neural Networks have pushed the state-of-the art for semantic segmentation provided that a large amount of images together with pixel-wise annotations is available. Data collection is expensive and a solution to alleviate it is to use transfer learning. This reduces the amount of annotated data required for the network training but it does not get rid of this heavy processing step. We propose a method of transfer learning without annotations on the target task for datasets with redundant content and distinct pixel distributions. Our method takes advantage of the approximate content alignment of the images between two datasets when the approximation error prevents the reuse of annotation from one dataset to another. Given the annotations for only one dataset, we train a first network in a supervised manner. This network autonomously learns to generate deep data representations relevant to the semantic segmentation. Then the images in the new dataset, we train a new network to generate a deep data representation that matches the one from the first network on the previous dataset. The training consists in a regression between feature maps and does not require any annotations on the new dataset. We show that this method reaches performances similar to a classic transfer learning on the PASCAL VOC dataset with synthetic transformations.

北京阿比特科技有限公司